[Maclage et compétition de grains dans le silicium multi-cristallin durant la solidification]
La solidification du silicium multi-cristallin a été étudiée en menant à bien des expériences de solidification dirigée. Le phénomène de maclage a été identifié et observé in situ et en temps réel pendant la solidification, en utilisant des techniques dʼimagerie X synchrotron : radiographie et topographie. Les observations par radiographie donnent des informations concernant la formation, la localisation à lʼinterface et lʼévolution des macles au cours de la solidification. Les résultats de topographie donnent des informations complémentaires sur lʼarrangement des grains et sur la compétition de croissance des macles et des grains. Nous avons montré lʼexistence de deux mécanismes de maclage : la formation de macles multiples pendant la croissance dʼun grain et la germination dʼune macle unique dans le sillon dʼun joint de grains.
Multi-crystalline silicon solidification is investigated by performing directional solidification experiments. Twinning phenomenon has been identified and observed in situ and in real time during the solidification using X-ray synchrotron imaging techniques: radiography and topography. The radiography observations give information on the formation, birth localized at the interface and evolution of the twins during solidification. The topography results give further information on the grain arrangement and on new grains in twinned position and grain growth competition. We have evidenced two twinning mechanisms: the first is the multiple twin formations during the growth of one grain. The second is the nucleation of a grain in twinned position at the bottom of a grain boundary groove.
Mots-clés : Silicium, Solidification, Radiographie X, Synchrotron, Macles, Compétition de grains
Amina Tandjaoui 1, 2 ; Nathalie Mangelinck-Noel 1, 2 ; Guillaume Reinhart 1, 2 ; Bernard Billia 1, 2 ; Xavier Guichard 3
@article{CRPHYS_2013__14_2-3_141_0, author = {Amina Tandjaoui and Nathalie Mangelinck-Noel and Guillaume Reinhart and Bernard Billia and Xavier Guichard}, title = {Twinning occurrence and grain competition in multi-crystalline silicon during solidification}, journal = {Comptes Rendus. Physique}, pages = {141--148}, publisher = {Elsevier}, volume = {14}, number = {2-3}, year = {2013}, doi = {10.1016/j.crhy.2012.12.001}, language = {en}, }
TY - JOUR AU - Amina Tandjaoui AU - Nathalie Mangelinck-Noel AU - Guillaume Reinhart AU - Bernard Billia AU - Xavier Guichard TI - Twinning occurrence and grain competition in multi-crystalline silicon during solidification JO - Comptes Rendus. Physique PY - 2013 SP - 141 EP - 148 VL - 14 IS - 2-3 PB - Elsevier DO - 10.1016/j.crhy.2012.12.001 LA - en ID - CRPHYS_2013__14_2-3_141_0 ER -
%0 Journal Article %A Amina Tandjaoui %A Nathalie Mangelinck-Noel %A Guillaume Reinhart %A Bernard Billia %A Xavier Guichard %T Twinning occurrence and grain competition in multi-crystalline silicon during solidification %J Comptes Rendus. Physique %D 2013 %P 141-148 %V 14 %N 2-3 %I Elsevier %R 10.1016/j.crhy.2012.12.001 %G en %F CRPHYS_2013__14_2-3_141_0
Amina Tandjaoui; Nathalie Mangelinck-Noel; Guillaume Reinhart; Bernard Billia; Xavier Guichard. Twinning occurrence and grain competition in multi-crystalline silicon during solidification. Comptes Rendus. Physique, Crystal growth / Croissance cristalline, Volume 14 (2013) no. 2-3, pp. 141-148. doi : 10.1016/j.crhy.2012.12.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.12.001/
[1] et al. State-of-the-art growth of silicon for PV applications, J. Cryst. Growth, Volume 360 (2012), pp. 56-60
[2] et al. Microstructures of Si multicrystals and their impact on minority carrier diffusion length, Acta Mater., Volume 57 (2009), p. 3268
[3] et al. Growth and characterization of multi-crystalline silicon ingots by directional solidification for solar cell applications, Energy Procedia, Volume 8 (2011), p. 371
[4] et al. Grain control using spot cooling in multi-crystalline silicon crystal growth, J. Cryst. Growth, Volume 311 (2009), p. 263
[5] et al. Factors limiting minority carrier lifetime in solar grade silicon produced by metallurgical route, Sol. Energy Mater. Sol. Cells, Volume 95 (2011), p. 564
[6] et al. Directional growth method to obtain high quality polycrystalline silicon from its melt, J. Cryst. Growth, Volume 292 (2006), p. 282
[7] C.W. Lan, et al., Grain control in directional solidification of photovoltaic silicon, J. Cryst. Growth (2012), in press.
[8] et al. Implementation of faceted dendrite growth on floating cast method to realize high-quality multicrystalline Si ingot for solar cells, J. Appl. Phys., Volume 109 (2011)
[9] et al. Growth of multi-crystalline Si ingots using non-contact crucible method for reduction of stress, J. Cryst. Growth, Volume 344 (2012), p. 6
[10] T. Duffar, in: Recent Research Developments in Crystal Growth, vol. 5, 2010, pp. 61–113.
[11] Acta Mater., 58 (2010), pp. 3223-3229
[12] et al. Real time observation of the directional solidification of multi-crystalline silicon: X-ray imaging characterization, Energy Procedia, Volume 27 (2012), pp. 82-87
[13] et al. In situ observations of crystal growth behavior of silicon melt, J. Cryst. Growth, Volume 243 (2002), p. 275
[14] et al. Formation mechanism of parallel twins related to Si-facetted dendrite growth, Scr. Mater., Volume 57 (2007), p. 81
[15] Scr. Mater., 72 (2010), pp. 955-960
[16] et al. Formation of parallel (111) twin boundaries in silicon growth from the melt explained by molecular dynamics simulations, J. Cryst. Growth, Volume 312 (2010), p. 1411
- Peritectic solidification patterns in the Zn–Ag system captured in three- and four-dimensions, Acta Materialia, Volume 274 (2024), p. 119992 | DOI:10.1016/j.actamat.2024.119992
- Xenon Nanobubbles and Residual Defects in Annealed Xe‐Implanted Si(001): Analysis by the Combination of Advanced Synchrotron X‐Ray Diffraction and Transmission Electron Microscopy Techniques, Advanced Materials Technologies, Volume 9 (2024) no. 12 | DOI:10.1002/admt.202301621
- Nucleation kinetics of twins in bulk β-Ga2O3 crystal, Materials Design, Volume 243 (2024), p. 113012 | DOI:10.1016/j.matdes.2024.113012
- Crystal distortions and structural defects at several scales generated during the growth of silicon contaminated with carbon, Acta Materialia, Volume 252 (2023), p. 118904 | DOI:10.1016/j.actamat.2023.118904
- Pseudo-4D view of the growth and form of locked eutectic colonies, Acta Materialia, Volume 240 (2022), p. 118335 | DOI:10.1016/j.actamat.2022.118335
- Dynamics at crystal/melt interface during solidification of multicrystalline silicon, High Temperature Materials and Processes, Volume 41 (2022) no. 1, p. 31 | DOI:10.1515/htmp-2022-0020
- Formation of three-phase eutectic grains on primary phases: Observations from correlative imaging, Journal of Alloys and Compounds, Volume 923 (2022), p. 166274 | DOI:10.1016/j.jallcom.2022.166274
- Study on Growth Behavior of Twins in Cast Monocrystalline Silicon, Silicon (2022) | DOI:10.1007/s12633-022-02152-1
- Effects of Heat Extraction Methods on the Quality of High Performance Multi-Crystalline Silicon Ingot, Silicon, Volume 14 (2022) no. 17, p. 11253 | DOI:10.1007/s12633-022-01867-5
- Pleomorphism and multidirectional combination of Si crystal nucleation during solidification, Journal of Materials Science, Volume 56 (2021) no. 28, p. 15960 | DOI:10.1007/s10853-021-06313-2
- A front-tracking measurement technique for in-situ columnar and equiaxed structure growth with controlled solidification, Measurement Science and Technology, Volume 32 (2021) no. 4, p. 045903 | DOI:10.1088/1361-6501/abcb24
- Three-dimensional cellular automaton modeling of silicon crystallization with grains in twin relationships, Acta Materialia, Volume 191 (2020), p. 230 | DOI:10.1016/j.actamat.2020.03.051
- X-ray Based in Situ Investigation of Silicon Growth Mechanism Dynamics—Application to Grain and Defect Formation, Crystals, Volume 10 (2020) no. 7, p. 555 | DOI:10.3390/cryst10070555
- 3D cellular automaton modelling of silicon crystallization including grains in twin relationship, IOP Conference Series: Materials Science and Engineering, Volume 861 (2020) no. 1, p. 012052 | DOI:10.1088/1757-899x/861/1/012052
- Investigation of subgrains in directionally solidified cast mono-seeded silicon and their interactions with twin boundaries, Solar Energy Materials and Solar Cells, Volume 218 (2020), p. 110817 | DOI:10.1016/j.solmat.2020.110817
- Strain building and correlation with grain nucleation during silicon growth, Acta Materialia, Volume 177 (2019), p. 141 | DOI:10.1016/j.actamat.2019.07.035
- Evolution of solidification defects in deformation of nano-polycrystalline aluminum, Computational Materials Science, Volume 163 (2019), p. 176 | DOI:10.1016/j.commatsci.2019.03.034
- Simultaneous X-ray radiography and diffraction topography imaging applied to silicon for defect analysis during melting and crystallization, Journal of Applied Crystallography, Volume 52 (2019) no. 6, p. 1312 | DOI:10.1107/s1600576719013050
- Role of Impurities in Silicon Solidification and Electrical Properties Studied by Complementary In Situ and Ex Situ Methods, physica status solidi (a), Volume 216 (2019) no. 17 | DOI:10.1002/pssa.201900298
- In-situ studies of multicrystalline silicon nucleation and growth on α- and β-Si3N4 coated substrates, Journal of Crystal Growth, Volume 482 (2018), p. 75 | DOI:10.1016/j.jcrysgro.2017.11.005
- In Situ Imaging of Dislocation Expansion in FZ‐Si Seeds During Temperature Ramp Heating Process, physica status solidi (a), Volume 215 (2018) no. 14 | DOI:10.1002/pssa.201700758
- Growth undercooling in multi-crystalline pure silicon and in silicon containing light impurities (C and O), Journal of Crystal Growth, Volume 466 (2017), p. 64 | DOI:10.1016/j.jcrysgro.2017.03.025
- Phase field modeling of grain structure evolution during directional solidification of multi-crystalline silicon sheet, Journal of Crystal Growth, Volume 475 (2017), p. 150 | DOI:10.1016/j.jcrysgro.2017.06.016
- Formation mechanism and properties of twinned structures in (111) seeded directionally solidified solar grade silicon, Acta Materialia, Volume 121 (2016), p. 24 | DOI:10.1016/j.actamat.2016.08.063
- Twin-mediated crystal growth, Journal of Materials Research, Volume 31 (2016) no. 19, p. 2936 | DOI:10.1557/jmr.2016.308
- Grain Growth in the Melt, Handbook of Crystal Growth (2015), p. 723 | DOI:10.1016/b978-0-444-56369-9.00017-4
- On the impact of twinning on the formation of the grain structure of multi-crystalline silicon for photovoltaic applications during directional solidification, Journal of Crystal Growth, Volume 418 (2015), p. 38 | DOI:10.1016/j.jcrysgro.2015.02.024
- Instability of crystal/melt interface including twin boundaries of silicon, Applied Physics Letters, Volume 104 (2014) no. 18 | DOI:10.1063/1.4876177
- Development of grain structures of multi-crystalline silicon from randomly orientated seeds in directional solidification, Journal of Crystal Growth, Volume 387 (2014), p. 10 | DOI:10.1016/j.jcrysgro.2013.10.021
- Experimental study of grain boundary orientations in multi-crystalline silicon, Journal of Crystal Growth, Volume 401 (2014), p. 404 | DOI:10.1016/j.jcrysgro.2013.12.047
- The five parameter grain boundary character distribution of polycrystalline silicon, Journal of Materials Science, Volume 49 (2014) no. 14, p. 4938 | DOI:10.1007/s10853-014-8195-2
- The grain–grain–liquid triple phase line during solidification of multi-crystalline silicon, Comptes Rendus. Physique, Volume 14 (2013) no. 2-3, p. 185 | DOI:10.1016/j.crhy.2012.12.003
- Investigation of grain boundary grooves at the solid–liquid interface during directional solidification of multi-crystalline silicon: in situ characterization by X-ray imaging, Journal of Crystal Growth, Volume 377 (2013), p. 203 | DOI:10.1016/j.jcrysgro.2013.05.023
Cité par 33 documents. Sources : Crossref
Commentaires - Politique