In linear approximation to general relativity, gravitational waves can be thought of as perturbation of the background metric that propagate at the speed of light. A time-varying quadrupole of matter distribution causes the emission of gravitational waves. Application of Einsteinʼs quadrupole formula to radio binary pulsars has confirmed the existence of gravitational waves and vindicated general relativity to a phenomenal degree of accuracy. Gravitational radiation is also thought to drive binary supermassive black holes to coalescence – the final chapter in the dynamics of galaxy collisions. Binaries of compact stars (i.e., neutron stars and/or black holes) are expected to be the most luminous sources of gravitational radiation. The goal of this review is to provide a heuristic picture of what gravitational waves are, outline the worldwide effort to detect astronomical sources, describe the basic tools necessary to estimate their amplitudes and discuss potential sources of gravitational waves and their detectability with detectors that are currently being built and planned for the future.
B.S. Sathyaprakash 1
@article{CRPHYS_2013__14_4_272_0, author = {B.S. Sathyaprakash}, title = {Gravitational waves and astrophysical sources}, journal = {Comptes Rendus. Physique}, pages = {272--287}, publisher = {Elsevier}, volume = {14}, number = {4}, year = {2013}, doi = {10.1016/j.crhy.2013.01.005}, language = {en}, }
B.S. Sathyaprakash. Gravitational waves and astrophysical sources. Comptes Rendus. Physique, Volume 14 (2013) no. 4, pp. 272-287. doi : 10.1016/j.crhy.2013.01.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.01.005/
[1] On the physical lines of force, Philos. Mag., Volume 20–23 (1861) (parts I–IV, see, especially, part III)
[2] A dynamical theory of the electromagnetic field, Philos. Trans. R. Soc. Lond., Volume 155 (1865), pp. 459-512
[3] Electric Waves: Being Researches on the Propagation of Electric Action with Finite Velocity Through Space, MacMillan and Co., London, 1893 (translated by D.E. Jones)
[4] A. Einstein, Näherungsweise integration der feldgleichungen der gravitation, in: Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, Berlin, 1916, pp. 688–696.
[5] A. Einstein, Über gravitationswellen, in: Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, Berlin, 1918, pp. 154–167.
[6] Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves, Princeton University Press, Princeton, 2007
[7] On gravitational waves, J. Franklin Inst., Volume 223 (1937), pp. 43-54
[8] Gravitational waves in general relativity. III. Exact plane waves, Proc. R. Soc. Lond., Volume 251 (1959), pp. 519-533
[9] Discovery of a pulsar in a binary system, Astrophys. J., Volume 195 (1975), p. L51-L53
[10] Measurements of general relativistic effects in the binary pulsar PSR1913+16, Nature, Volume 277 (1979), pp. 437-440
[11] The relativistic binary pulsar B1913+16: Thirty years of observations and analysis (F.A. Rasio; I.H. Stairs, eds.), Binary Radio Pulsars, ASP Conf. Ser., vol. 328, Astronomical Society of the Pacific, Aspen, Colorado, USA, 2005, p. 25 (ISBN: 1-58381-191-5)
[12] Gravitational radiation, Phys. Rev. Lett., Volume 18 (1967), pp. 498-501
[13] et al. Ligo: The laser interferometer gravitational wave observatory, Science, Volume 256 (1992), pp. 325-333
[14] et al. The Virgo interferometer, Class. Quantum Gravity, Volume 14 (1997), pp. 1461-1469 | DOI
[15] et al. The GEO 600 gravitational wave detector, Class. Quantum Gravity, Volume 19 (2002), pp. 1377-1387 | DOI
[16] Current status of TAMA, Class. Quantum Gravity, Volume 19 (2002), pp. 1409-1419 | DOI
[17] et al. LIGO: the Laser Interferometer Gravitational-Wave Observatory, Rep. Prog. Phys., Volume 72 (2009) no. 7, p. 076901 | arXiv | DOI
[18] et al. An upper limit on the stochastic gravitational-wave background of cosmological origin, Nature, Volume 460 (2009), pp. 990-994 | arXiv | DOI
[19] et al. Implications for the origin of GRB 070201 from LIGO observations, Astrophys. J., Volume 681 (2008), pp. 1419-1430 | arXiv | DOI
[20] et al. Searches for gravitational waves from known pulsars with science run 5 LIGO data, Astrophys. J., Volume 713 (2010), pp. 671-685 | arXiv | DOI
[21] B. Abbott, et al., Advanced LIGO reference design, Tech. Rep. LIGO-M060056-08-M, LIGO Project, 2007, http://www.ligo.caltech.edu/docs/M/M060056-08/M060056-08.pdf.
[22] The Virgo Collaboration, edited by The Advanced Virgo Team, Advanced Virgo conceptual design, Tech. Rep. VIR-0042A-07, Virgo Project, 2007, https://tds.ego-gw.it/ql/?c=1900.
[23] B. Iyer, T. Souradeep, C. Unnikrishnan, S. Dhurandhar, S. Raja, A. Sengupta, LIGO-India, Proposal of the Consortium for Indian Initiative in Gravitational-Wave Observations, Tech. Rep. M1100296-v2, IndIGO Consortium, 2012, https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=75988.
[24] Detector configuration of KAGRA – the Japanese cryogenic gravitational-wave detector, Class. Quantum Gravity, Volume 29 (2012) no. 12, p. 124007 | arXiv | DOI
[25] Gravitational wave detection by interferometry (ground and space), Living Rev. Relativ., Volume 14 (2011) no. 5 http://www.livingreviews.org/lrr-2011-5
[26] et al. The Einstein Telescope: A third-generation gravitational wave observatory, Class. Quantum Gravity, Volume 27 (2010), p. 194002 | DOI
[27] M. Abernathy, et al., The ET Science Team, Einstein Gravitational-Wave Telescope: Conceptual design study, Tech. Rep. ET-0106A-10, European Gravitational Observatory, 2011, https://tds.ego-gw.it/itf/tds/index.php?callContent=2&callCode=8709.
[28] et al. Scientific objectives of Einstein Telescope, Class. Quantum Gravity, Volume 29 (2012) no. 12, p. 124013 | arXiv | DOI
[29] LISA – an ESA cornerstone mission for a gravitational wave observatory, Class. Quantum Gravity, Volume 14 (1997), p. 1399
[30] Possibility of direct measurement of the acceleration of the universe using 0.1-Hz band laser interferometer gravitational wave antenna in space, Phys. Rev. Lett., Volume 87 (2001), p. 221103 | arXiv
[31] Physics, astrophysics and cosmology with gravitational waves, Living Rev. Relativ., Volume 12 (2009), p. 2
[32] Constructing a pulsar timing array, Astrophys. J., Volume 361 (1990), pp. 300-308 | DOI
[33] European Pulsar Timing Array (C. Bassa; Z. Wang; A. Cumming; V.M. Kaspi, eds.), 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More, American Institute of Physics Conference Series, vol. 983, 2008, pp. 633-635 | DOI
[34] The Parkes Pulsar Timing Array project (C. Bassa; Z. Wang; A. Cumming; V.M. Kaspi, eds.), 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More, American Institute of Physics Conference Series, vol. 983, 2008, pp. 584-592 | arXiv | DOI
[35] The North American Nanohertz Observatory for Gravitational Waves | arXiv
[36] et al. The International Pulsar Timing Array project: using pulsars as a gravitational wave detector, Class. Quantum Gravity, Volume 27 (2010) no. 8, p. 084013 | arXiv | DOI
[37] Constraining the properties of supermassive black hole systems using pulsar timing: Application to 3C 66B, Astrophys. J., Volume 606 (2004), pp. 799-803 | arXiv | DOI
[38] Gravitational waves from resolvable massive black hole binary systems and observations with Pulsar Timing Arrays, Mon. Not. R. Astron. Soc., Volume 394 (2009), pp. 2255-2265 | arXiv | DOI
[39] The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays, Mon. Not. R. Astron. Soc., Volume 390 (2008), pp. 192-209 | arXiv | DOI
[40] Upper bounds on the low-frequency stochastic gravitational wave background from pulsar timing observations: Current limits and future prospects, Astrophys. J., Volume 653 (2006), pp. 1571-1576 | arXiv | DOI
[41] The polarization of the cosmic microwave background due to primordial gravitational waves, Int. J. Mod. Phys. A, Volume 21 (2006), pp. 2459-2479 | arXiv
[42] The Planck Collaboration, Planck: The scientific programme, Tech. Rep. ESA-SCI (2005) 1, European Space Agency, 2005, http://www.sciops.esa.int/SA/PLANCK/docs/Bluebook-ESA-SCI%282005%291_V2.pdf.
[43] Gravitational radiation from post-Newtonian sources and inspiralling compact binaries, Living Rev. Relativ., Volume 9 (2006), p. 4 | arXiv
[44] Gravitation, Freeman, San Francisco, 1973
[45] A First Course in General Relativity, Cambridge University Press, 2009
[46] Gravitational Waves, vol. 1: Theory and Experiments, Oxford University Press, Oxford, UK, 2007
[47] J.B. Hartle, An Introduction to Einsteinʼs General Relativity, Addison Wesley, San Francisco, USA, ISBN 0-8053-8662-9.
[48] Gravitational radiation in the limit of high frequency. II. Nonlinear terms and the effective stress tensor, Phys. Rev., Volume 166 (1968), pp. 1272-1279 | DOI
[49] An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system, Nature, Volume 426 (2003), p. 531 | arXiv
[50] et al. Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors, Class. Quantum Gravity, Volume 27 (2010), p. 173001 | arXiv | DOI
[51] IC10 X-1/NGC300 X-1: the very immediate progenitors of BH–BH binaries, Astrophys. J., Volume 730 (2011), p. 140 | arXiv | DOI
[52] The effect of metallicity on the detection prospects for gravitational waves, Astrophys. J. Lett., Volume 715 (2010), p. L138-L141 | arXiv | DOI
[53] et al. A star in a 15.2 year orbit around the supermassive black hole at the center of the Milky Way, Nature, Volume 419 (2002), pp. 694-696 | DOI
[54] et al. Stellar orbits around the galactic center black hole, Astrophys. J., Volume 620 (2005), pp. 744-757 | arXiv | DOI
[55] et al. eLISA: Astrophysics and cosmology in the millihertz regime | arXiv
[56] et al. Low-frequency gravitational-wave science with eLISA/NGO, Class. Quantum Gravity, Volume 29 (2012), p. 124016 | arXiv | DOI
[57] et al. Massive black hole binary inspirals: Results from the LISA parameter estimation taskforce, Class. Quantum Gravity, Volume 26 (2009), p. 094027 | arXiv | DOI
[58] An intermediate-mass black hole of over 500 solar masses in the galaxy ESO243-49, Nature, Volume 460 (2009), pp. 73-75 | DOI
[59] Observing gravitational waves from the first generation of black holes, Astrophys. J., Volume 698 (2009), p. L129-L132 | arXiv | DOI
[60] Probing seed black holes using future gravitational-wave detectors, Class. Quantum Gravity, Volume 26 (2009), p. 204009 | arXiv | DOI
[61] Detection of IMBHs with ground-based gravitational wave observatories: A biography of a binary of black holes, from birth to death, Astrophys. J., Volume 722 (2010), pp. 1197-1206 | arXiv | DOI
[62] Accuracy of estimating the multipole moments of a massive body from the gravitational waves of a binary inspiral, Phys. Rev. D, Volume 56 (1997), p. 1845
[63] Probing seed black holes using future gravitational-wave detectors, Class. Quantum Gravity, Volume 26 (2009) no. 20, p. 204009 | arXiv | DOI
[64] Determining the Hubble constant from gravitational wave observations, Nature (London), Volume 323 (1986), p. 310
[65] Short GRB and binary black hole standard sirens as a probe of dark energy, Phys. Rev. D, Volume 74 (2006), p. 063006 | arXiv
[66] Cosmography with the Einstein Telescope, Class. Quantum Gravity, Volume 27 (2010), p. 215006 | arXiv | DOI
[67] Exploring short gamma-ray bursts as gravitational-wave standard sirens, Astrophys. J., Volume 725 (2010), pp. 496-514 | arXiv | DOI
[68] GRB beaming and gravitational-wave observations | arXiv
[69] Short-hard gamma-ray bursts, Phys. Rep., Volume 442 (2007), pp. 166-236 | arXiv | DOI
[70] Measuring a cosmological distance–redshift relationship using only gravitational wave observations of binary neutron star coalescences, Phys. Rev. Lett., Volume 108 (2012), p. 091101 | arXiv
[71] Quasinormal modes of black holes and black branes, Class. Quantum Gravity, Volume 26 (2009), p. 163001 | arXiv | DOI
[72] Black-hole hair loss: learning about binary progenitors from ringdown signals, Phys. Rev. D, Volume 85 (2012), p. 024018 | arXiv | DOI
[73] Is black-hole ringdown a memory of its progenitor?, Phys. Rev. Lett., Volume 109 (2012), p. 141102 | arXiv | DOI
[74] Black hole spectroscopy: Testing general relativity through gravitational wave observations, Class. Quantum Gravity, Volume 21 (2004), p. 787 | arXiv
[75] Matched filtering and parameter estimation of ringdown waveforms, Phys. Rev. D, Volume 76 (2007), p. 104044 | arXiv | DOI
[76] Bayesian model selection for testing the no-hair theorem with black hole ringdowns | arXiv
[77] Maximum elastic deformations of compact stars with exotic equations of state, Phys. Rev. Lett., Volume 95 (2005), p. 211101 | arXiv | DOI
[78] Deformations of accreting neutron star crusts and gravitational wave emission, Mon. Not. R. Astron. Soc., Volume 319 (2000), p. 902
[79] Gravitational waves from neutron stars with large toroidal B fields, Phys. Rev. D, Volume 66 (2002) no. 8, p. 084025 | arXiv | DOI
[80] Gravitational waves from an accreting neutron star with a magnetic mountain (J. Centrella, ed.), Astrophysics of Gravitational Wave Sources, AIP Conference Proceedings, vol. 686, American Institute of Physics, Melville, NY, 2003, pp. 92-95
[81] Physics of neutron star crusts, Living Rev. Relativ., Volume 11 (2008) no. 10 http://www.livingreviews.org/lrr-2008-10
[82] A study of 315 glitches in the rotation of 102 pulsars, Mon. Not. R. Astron. Soc., Volume 414 (2011), pp. 1679-1704 | arXiv | DOI
[83] Amplification of gravitational waves in an isotropic universe, Sov. Phys. JETP, Volume 40 (1975), pp. 409-415
[84] Gravitational wave experiments and early universe cosmology, Phys. Rep., Volume 331 (2000), p. 283
[85] Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities, Phys. Rev. D, Volume 59 (1999), p. 102001 | arXiv | DOI
[86] The gravitational wave signal from the galactic disk population of binaries containing two compact objects, Astron. Astrophys., Volume 375 (2001), p. 890 | arXiv
[87] A practical theorem on gravitational wave backgrounds | arXiv
[88] Astrophysical sources of stochastic gravitational-wave background, Class. Quantum Gravity, Volume 25 (2008), p. 184018 | arXiv | DOI
[89] The astrophysical gravitational wave stochastic background, Res. Astron. Astrophys., Volume 11 (2011), pp. 369-390 | arXiv | DOI
[90] et al. A Mock data challenge for the Einstein Gravitational-Wave Telescope, Phys. Rev. D, Volume 86 (2012), p. 122001 | arXiv | DOI
[91] Systematic investigation of the expected gravitational wave signal from supermassive black hole binaries in the pulsar timing band | arXiv
[92] et al. Placing limits on the stochastic gravitational-wave background using European Pulsar Timing Array data | arXiv
[93] Stochastic gravity-wave background in inflationary-universe models, Phys. Rev. D, Volume 37 (1988), pp. 2078-2085
[94] Gravitational wave astronomy: in anticipation of first sources to be detected, Phys. Usp., Volume 44 (2001), p. 1 | arXiv
Cité par Sources :
Commentaires - Politique