Comptes Rendus
Gravitational waves and astrophysical sources
Comptes Rendus. Physique, Volume 14 (2013) no. 4, pp. 272-287.

In linear approximation to general relativity, gravitational waves can be thought of as perturbation of the background metric that propagate at the speed of light. A time-varying quadrupole of matter distribution causes the emission of gravitational waves. Application of Einsteinʼs quadrupole formula to radio binary pulsars has confirmed the existence of gravitational waves and vindicated general relativity to a phenomenal degree of accuracy. Gravitational radiation is also thought to drive binary supermassive black holes to coalescence – the final chapter in the dynamics of galaxy collisions. Binaries of compact stars (i.e., neutron stars and/or black holes) are expected to be the most luminous sources of gravitational radiation. The goal of this review is to provide a heuristic picture of what gravitational waves are, outline the worldwide effort to detect astronomical sources, describe the basic tools necessary to estimate their amplitudes and discuss potential sources of gravitational waves and their detectability with detectors that are currently being built and planned for the future.

Publié le :
DOI : 10.1016/j.crhy.2013.01.005
Mots clés : Gravitational waves, Black holes, Neutron stars, Gravitational astronomy

B.S. Sathyaprakash 1

1 School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, UK
@article{CRPHYS_2013__14_4_272_0,
     author = {B.S. Sathyaprakash},
     title = {Gravitational waves and astrophysical sources},
     journal = {Comptes Rendus. Physique},
     pages = {272--287},
     publisher = {Elsevier},
     volume = {14},
     number = {4},
     year = {2013},
     doi = {10.1016/j.crhy.2013.01.005},
     language = {en},
}
TY  - JOUR
AU  - B.S. Sathyaprakash
TI  - Gravitational waves and astrophysical sources
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 272
EP  - 287
VL  - 14
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.01.005
LA  - en
ID  - CRPHYS_2013__14_4_272_0
ER  - 
%0 Journal Article
%A B.S. Sathyaprakash
%T Gravitational waves and astrophysical sources
%J Comptes Rendus. Physique
%D 2013
%P 272-287
%V 14
%N 4
%I Elsevier
%R 10.1016/j.crhy.2013.01.005
%G en
%F CRPHYS_2013__14_4_272_0
B.S. Sathyaprakash. Gravitational waves and astrophysical sources. Comptes Rendus. Physique, Volume 14 (2013) no. 4, pp. 272-287. doi : 10.1016/j.crhy.2013.01.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.01.005/

[1] J. Maxwell On the physical lines of force, Philos. Mag., Volume 20–23 (1861) (parts I–IV, see, especially, part III)

[2] J. Maxwell A dynamical theory of the electromagnetic field, Philos. Trans. R. Soc. Lond., Volume 155 (1865), pp. 459-512

[3] H. Hertz Electric Waves: Being Researches on the Propagation of Electric Action with Finite Velocity Through Space, MacMillan and Co., London, 1893 (translated by D.E. Jones)

[4] A. Einstein, Näherungsweise integration der feldgleichungen der gravitation, in: Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, Berlin, 1916, pp. 688–696.

[5] A. Einstein, Über gravitationswellen, in: Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, Berlin, 1918, pp. 154–167.

[6] D. Kennefick Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves, Princeton University Press, Princeton, 2007

[7] A. Einstein; N. Rosen On gravitational waves, J. Franklin Inst., Volume 223 (1937), pp. 43-54

[8] H. Bondi; F. Pirani; I. Robinson Gravitational waves in general relativity. III. Exact plane waves, Proc. R. Soc. Lond., Volume 251 (1959), pp. 519-533

[9] R.A. Hulse; J.H. Taylor Discovery of a pulsar in a binary system, Astrophys. J., Volume 195 (1975), p. L51-L53

[10] J. Taylor; L. Fowler; P. McCulloch Measurements of general relativistic effects in the binary pulsar PSR1913+16, Nature, Volume 277 (1979), pp. 437-440

[11] J.M. Weisberg; J.H. Taylor The relativistic binary pulsar B1913+16: Thirty years of observations and analysis (F.A. Rasio; I.H. Stairs, eds.), Binary Radio Pulsars, ASP Conf. Ser., vol. 328, Astronomical Society of the Pacific, Aspen, Colorado, USA, 2005, p. 25 (ISBN: 1-58381-191-5)

[12] J. Weber Gravitational radiation, Phys. Rev. Lett., Volume 18 (1967), pp. 498-501

[13] A. Abramovici et al. Ligo: The laser interferometer gravitational wave observatory, Science, Volume 256 (1992), pp. 325-333

[14] B. Caron; A. Dominjon; C. Drezen; R. Flaminio; X. Grave; F. Marion; L. Massonnet; C. Mehmel; R. Morand; B. Mours et al. The Virgo interferometer, Class. Quantum Gravity, Volume 14 (1997), pp. 1461-1469 | DOI

[15] B. Willke; P. Aufmuth; C. Aulbert; S. Babak; R. Balasubramanian; B.W. Barr; S. Berukoff; S. Bose; G. Cagnoli; M.M. Casey et al. The GEO 600 gravitational wave detector, Class. Quantum Gravity, Volume 19 (2002), pp. 1377-1387 | DOI

[16] M. Ando; TAMA Collaboration Current status of TAMA, Class. Quantum Gravity, Volume 19 (2002), pp. 1409-1419 | DOI

[17] B.P. Abbott; R. Abbott; R. Adhikari; P. Ajith; B. Allen; G. Allen; R.S. Amin; S.B. Anderson; W.G. Anderson; M.A. Arain et al. LIGO: the Laser Interferometer Gravitational-Wave Observatory, Rep. Prog. Phys., Volume 72 (2009) no. 7, p. 076901 | arXiv | DOI

[18] B.P. Abbott; R. Abbott; F. Acernese; R. Adhikari; P. Ajith; B. Allen; G. Allen; M. Alshourbagy; R.S. Amin; S.B. Anderson et al. An upper limit on the stochastic gravitational-wave background of cosmological origin, Nature, Volume 460 (2009), pp. 990-994 | arXiv | DOI

[19] B. Abbott; R. Abbott; R. Adhikari; J. Agresti; P. Ajith; B. Allen; R. Amin; S.B. Anderson; W.G. Anderson; M. Arain et al. Implications for the origin of GRB 070201 from LIGO observations, Astrophys. J., Volume 681 (2008), pp. 1419-1430 | arXiv | DOI

[20] B.P. Abbott; R. Abbott; F. Acernese; R. Adhikari; P. Ajith; B. Allen; G. Allen; M. Alshourbagy; R.S. Amin; S.B. Anderson et al. Searches for gravitational waves from known pulsars with science run 5 LIGO data, Astrophys. J., Volume 713 (2010), pp. 671-685 | arXiv | DOI

[21] B. Abbott, et al., Advanced LIGO reference design, Tech. Rep. LIGO-M060056-08-M, LIGO Project, 2007, http://www.ligo.caltech.edu/docs/M/M060056-08/M060056-08.pdf.

[22] The Virgo Collaboration, edited by The Advanced Virgo Team, Advanced Virgo conceptual design, Tech. Rep. VIR-0042A-07, Virgo Project, 2007, https://tds.ego-gw.it/ql/?c=1900.

[23] B. Iyer, T. Souradeep, C. Unnikrishnan, S. Dhurandhar, S. Raja, A. Sengupta, LIGO-India, Proposal of the Consortium for Indian Initiative in Gravitational-Wave Observations, Tech. Rep. M1100296-v2, IndIGO Consortium, 2012, https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=75988.

[24] K. Somiya Detector configuration of KAGRA – the Japanese cryogenic gravitational-wave detector, Class. Quantum Gravity, Volume 29 (2012) no. 12, p. 124007 | arXiv | DOI

[25] M. Pitkin; S. Reid; J. Hough Gravitational wave detection by interferometry (ground and space), Living Rev. Relativ., Volume 14 (2011) no. 5 http://www.livingreviews.org/lrr-2011-5

[26] M. Punturo; M. Abernathy; F. Acernese; B. Allen; N. Andersson et al. The Einstein Telescope: A third-generation gravitational wave observatory, Class. Quantum Gravity, Volume 27 (2010), p. 194002 | DOI

[27] M. Abernathy, et al., The ET Science Team, Einstein Gravitational-Wave Telescope: Conceptual design study, Tech. Rep. ET-0106A-10, European Gravitational Observatory, 2011, https://tds.ego-gw.it/itf/tds/index.php?callContent=2&callCode=8709.

[28] B. Sathyaprakash; M. Abernathy; F. Acernese; P. Ajith; B. Allen; P. Amaro-Seoane; N. Andersson; S. Aoudia; K. Arun; P. Astone et al. Scientific objectives of Einstein Telescope, Class. Quantum Gravity, Volume 29 (2012) no. 12, p. 124013 | arXiv | DOI

[29] K. Danzmann LISA – an ESA cornerstone mission for a gravitational wave observatory, Class. Quantum Gravity, Volume 14 (1997), p. 1399

[30] N. Seto; S. Kawamura; T. Nakamura Possibility of direct measurement of the acceleration of the universe using 0.1-Hz band laser interferometer gravitational wave antenna in space, Phys. Rev. Lett., Volume 87 (2001), p. 221103 | arXiv

[31] B.S. Sathyaprakash; B.F. Schutz Physics, astrophysics and cosmology with gravitational waves, Living Rev. Relativ., Volume 12 (2009), p. 2

[32] R.S. Foster; D.C. Backer Constructing a pulsar timing array, Astrophys. J., Volume 361 (1990), pp. 300-308 | DOI

[33] G.H. Janssen; B.W. Stappers; M. Kramer; M. Purver; A. Jessner; I. Cognard European Pulsar Timing Array (C. Bassa; Z. Wang; A. Cumming; V.M. Kaspi, eds.), 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More, American Institute of Physics Conference Series, vol. 983, 2008, pp. 633-635 | DOI

[34] R.N. Manchester The Parkes Pulsar Timing Array project (C. Bassa; Z. Wang; A. Cumming; V.M. Kaspi, eds.), 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More, American Institute of Physics Conference Series, vol. 983, 2008, pp. 584-592 | arXiv | DOI

[35] F. Jenet; L.S. Finn; J. Lazio; A. Lommen; M. McLaughlin; I. Stairs; D. Stinebring; J. Verbiest; A. Archibald; Z. Arzoumanian; D. Backer; J. Cordes; P. Demorest; R. Ferdman; P. Freire; M. Gonzalez; V. Kaspi; V. Kondratiev; D. Lorimer; R. Lynch; D. Nice; S. Ransom; R. Shannon; X. Siemens The North American Nanohertz Observatory for Gravitational Waves | arXiv

[36] G. Hobbs; A. Archibald; Z. Arzoumanian; D. Backer; M. Bailes; N.D.R. Bhat; M. Burgay; S. Burke-Spolaor; D. Champion; I. Cognard et al. The International Pulsar Timing Array project: using pulsars as a gravitational wave detector, Class. Quantum Gravity, Volume 27 (2010) no. 8, p. 084013 | arXiv | DOI

[37] F.A. Jenet; A. Lommen; S.L. Larson; L. Wen Constraining the properties of supermassive black hole systems using pulsar timing: Application to 3C 66B, Astrophys. J., Volume 606 (2004), pp. 799-803 | arXiv | DOI

[38] A. Sesana; A. Vecchio; M. Volonteri Gravitational waves from resolvable massive black hole binary systems and observations with Pulsar Timing Arrays, Mon. Not. R. Astron. Soc., Volume 394 (2009), pp. 2255-2265 | arXiv | DOI

[39] A. Sesana; A. Vecchio; C.N. Colacino The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays, Mon. Not. R. Astron. Soc., Volume 390 (2008), pp. 192-209 | arXiv | DOI

[40] F.A. Jenet; G.B. Hobbs; W. van Straten; R.N. Manchester; M. Bailes; J.P.W. Verbiest; R.T. Edwards; A.W. Hotan; J.M. Sarkissian; S.M. Ord Upper bounds on the low-frequency stochastic gravitational wave background from pulsar timing observations: Current limits and future prospects, Astrophys. J., Volume 653 (2006), pp. 1571-1576 | arXiv | DOI

[41] B. Keating; A. Polnarev; N. Miller; D. Baskaran The polarization of the cosmic microwave background due to primordial gravitational waves, Int. J. Mod. Phys. A, Volume 21 (2006), pp. 2459-2479 | arXiv

[42] The Planck Collaboration, Planck: The scientific programme, Tech. Rep. ESA-SCI (2005) 1, European Space Agency, 2005, http://www.sciops.esa.int/SA/PLANCK/docs/Bluebook-ESA-SCI%282005%291_V2.pdf.

[43] L. Blanchet Gravitational radiation from post-Newtonian sources and inspiralling compact binaries, Living Rev. Relativ., Volume 9 (2006), p. 4 | arXiv

[44] C.W. Misner; K.S. Thorne; J.A. Wheeler Gravitation, Freeman, San Francisco, 1973

[45] B.F. Schutz A First Course in General Relativity, Cambridge University Press, 2009

[46] M. Maggiore Gravitational Waves, vol. 1: Theory and Experiments, Oxford University Press, Oxford, UK, 2007

[47] J.B. Hartle, An Introduction to Einsteinʼs General Relativity, Addison Wesley, San Francisco, USA, ISBN 0-8053-8662-9.

[48] R.A. Isaacson Gravitational radiation in the limit of high frequency. II. Nonlinear terms and the effective stress tensor, Phys. Rev., Volume 166 (1968), pp. 1272-1279 | DOI

[49] M. Burgay; N. DʼAmico; A. Possenti; R. Manchester; A. Lyne; B.C. Joshi; M.A. McLaughlin; M. Kramer; J.M. Sarkissian; F. Camilo; V. Kalogera; C. Kim; D.R. Lorimer An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system, Nature, Volume 426 (2003), p. 531 | arXiv

[50] J. Abadie et al. Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors, Class. Quantum Gravity, Volume 27 (2010), p. 173001 | arXiv | DOI

[51] T. Bulik; K. Belczynski; A. Prestwich IC10 X-1/NGC300 X-1: the very immediate progenitors of BH–BH binaries, Astrophys. J., Volume 730 (2011), p. 140 | arXiv | DOI

[52] K. Belczynski; M. Dominik; T. Bulik; R. OʼShaughnessy; C. Fryer; D.E. Holz The effect of metallicity on the detection prospects for gravitational waves, Astrophys. J. Lett., Volume 715 (2010), p. L138-L141 | arXiv | DOI

[53] R. Schodel; T. Ott; R. Genzel; R. Hofmann; M. Lehnert et al. A star in a 15.2 year orbit around the supermassive black hole at the center of the Milky Way, Nature, Volume 419 (2002), pp. 694-696 | DOI

[54] A. Ghez; S. Salim; S.D. Hornstein; A. Tanner; M. Morris et al. Stellar orbits around the galactic center black hole, Astrophys. J., Volume 620 (2005), pp. 744-757 | arXiv | DOI

[55] P. Amaro-Seoane; S. Aoudia; S. Babak; P. Binetruy; E. Berti et al. eLISA: Astrophysics and cosmology in the millihertz regime | arXiv

[56] P. Amaro-Seoane; S. Aoudia; S. Babak; P. Binetruy; E. Berti et al. Low-frequency gravitational-wave science with eLISA/NGO, Class. Quantum Gravity, Volume 29 (2012), p. 124016 | arXiv | DOI

[57] K.G. Arun et al. Massive black hole binary inspirals: Results from the LISA parameter estimation taskforce, Class. Quantum Gravity, Volume 26 (2009), p. 094027 | arXiv | DOI

[58] S.A. Farrell; N.A. Webb; D. Barret; O. Godet; J.M. Rodrigues An intermediate-mass black hole of over 500 solar masses in the galaxy ESO243-49, Nature, Volume 460 (2009), pp. 73-75 | DOI

[59] A. Sesana; J. Gair; I. Mandel; A. Vecchio Observing gravitational waves from the first generation of black holes, Astrophys. J., Volume 698 (2009), p. L129-L132 | arXiv | DOI

[60] J.R. Gair; I. Mandel; A. Sesana; A. Vecchio Probing seed black holes using future gravitational-wave detectors, Class. Quantum Gravity, Volume 26 (2009), p. 204009 | arXiv | DOI

[61] P. Amaro-Seoane; L. Santamaria Detection of IMBHs with ground-based gravitational wave observatories: A biography of a binary of black holes, from birth to death, Astrophys. J., Volume 722 (2010), pp. 1197-1206 | arXiv | DOI

[62] F.D. Ryan Accuracy of estimating the multipole moments of a massive body from the gravitational waves of a binary inspiral, Phys. Rev. D, Volume 56 (1997), p. 1845

[63] J.R. Gair; I. Mandel; A. Sesana; A. Vecchio Probing seed black holes using future gravitational-wave detectors, Class. Quantum Gravity, Volume 26 (2009) no. 20, p. 204009 | arXiv | DOI

[64] B.F. Schutz Determining the Hubble constant from gravitational wave observations, Nature (London), Volume 323 (1986), p. 310

[65] N. Dalal; D.E. Holz; S.A. Hughes; B. Jain Short GRB and binary black hole standard sirens as a probe of dark energy, Phys. Rev. D, Volume 74 (2006), p. 063006 | arXiv

[66] B. Sathyaprakash; B. Schutz; C. Van Den Broeck Cosmography with the Einstein Telescope, Class. Quantum Gravity, Volume 27 (2010), p. 215006 | arXiv | DOI

[67] S. Nissanke; D.E. Holz; S.A. Hughes; N. Dalal; J.L. Sievers Exploring short gamma-ray bursts as gravitational-wave standard sirens, Astrophys. J., Volume 725 (2010), pp. 496-514 | arXiv | DOI

[68] H.-Y. Chen; D.E. Holz GRB beaming and gravitational-wave observations | arXiv

[69] E. Nakar Short-hard gamma-ray bursts, Phys. Rep., Volume 442 (2007), pp. 166-236 | arXiv | DOI

[70] C. Messenger; J. Read Measuring a cosmological distance–redshift relationship using only gravitational wave observations of binary neutron star coalescences, Phys. Rev. Lett., Volume 108 (2012), p. 091101 | arXiv

[71] E. Berti; V. Cardoso; A.O. Starinets Quasinormal modes of black holes and black branes, Class. Quantum Gravity, Volume 26 (2009), p. 163001 | arXiv | DOI

[72] I. Kamaretsos; M. Hannam; S. Husa; B. Sathyaprakash Black-hole hair loss: learning about binary progenitors from ringdown signals, Phys. Rev. D, Volume 85 (2012), p. 024018 | arXiv | DOI

[73] I. Kamaretsos; M. Hannam; B. Sathyaprakash Is black-hole ringdown a memory of its progenitor?, Phys. Rev. Lett., Volume 109 (2012), p. 141102 | arXiv | DOI

[74] O. Dreyer; B. Kelly; B. Krishnan; L.S. Finn; D. Garrison; R. Lopez-Aleman Black hole spectroscopy: Testing general relativity through gravitational wave observations, Class. Quantum Gravity, Volume 21 (2004), p. 787 | arXiv

[75] E. Berti; J. Cardoso; V. Cardoso; M. Cavagliá Matched filtering and parameter estimation of ringdown waveforms, Phys. Rev. D, Volume 76 (2007), p. 104044 | arXiv | DOI

[76] S. Gossan; J. Veitch; B. Sathyaprakash Bayesian model selection for testing the no-hair theorem with black hole ringdowns | arXiv

[77] B.J. Owen Maximum elastic deformations of compact stars with exotic equations of state, Phys. Rev. Lett., Volume 95 (2005), p. 211101 | arXiv | DOI

[78] G. Ushomirsky; C. Cutler; L. Bildsten Deformations of accreting neutron star crusts and gravitational wave emission, Mon. Not. R. Astron. Soc., Volume 319 (2000), p. 902

[79] C. Cutler Gravitational waves from neutron stars with large toroidal B fields, Phys. Rev. D, Volume 66 (2002) no. 8, p. 084025 | arXiv | DOI

[80] D. Payne; A. Melatos; E. Phinney Gravitational waves from an accreting neutron star with a magnetic mountain (J. Centrella, ed.), Astrophysics of Gravitational Wave Sources, AIP Conference Proceedings, vol. 686, American Institute of Physics, Melville, NY, 2003, pp. 92-95

[81] N. Chamel; P. Haensel Physics of neutron star crusts, Living Rev. Relativ., Volume 11 (2008) no. 10 http://www.livingreviews.org/lrr-2008-10

[82] C.M. Espinoza; A.G. Lyne; B.W. Stappers; M. Kramer A study of 315 glitches in the rotation of 102 pulsars, Mon. Not. R. Astron. Soc., Volume 414 (2011), pp. 1679-1704 | arXiv | DOI

[83] L. Grishchuk Amplification of gravitational waves in an isotropic universe, Sov. Phys. JETP, Volume 40 (1975), pp. 409-415

[84] M. Maggiore Gravitational wave experiments and early universe cosmology, Phys. Rep., Volume 331 (2000), p. 283

[85] B. Allen; J.D. Romano Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities, Phys. Rev. D, Volume 59 (1999), p. 102001 | arXiv | DOI

[86] G. Nelemans; L.R. Yungelson; S.F. Portegies Zwart The gravitational wave signal from the galactic disk population of binaries containing two compact objects, Astron. Astrophys., Volume 375 (2001), p. 890 | arXiv

[87] E. Phinney A practical theorem on gravitational wave backgrounds | arXiv

[88] T. Regimbau; V. Mandic Astrophysical sources of stochastic gravitational-wave background, Class. Quantum Gravity, Volume 25 (2008), p. 184018 | arXiv | DOI

[89] T. Regimbau The astrophysical gravitational wave stochastic background, Res. Astron. Astrophys., Volume 11 (2011), pp. 369-390 | arXiv | DOI

[90] T. Regimbau; T. Dent; W. Del Pozzo; S. Giampanis; T.G. Li et al. A Mock data challenge for the Einstein Gravitational-Wave Telescope, Phys. Rev. D, Volume 86 (2012), p. 122001 | arXiv | DOI

[91] A. Sesana Systematic investigation of the expected gravitational wave signal from supermassive black hole binaries in the pulsar timing band | arXiv

[92] R. van Haasteren; Y. Levin; G. Janssen; K. Lazaridis; M.K.B. Stappers et al. Placing limits on the stochastic gravitational-wave background using European Pulsar Timing Array data | arXiv

[93] B. Allen Stochastic gravity-wave background in inflationary-universe models, Phys. Rev. D, Volume 37 (1988), pp. 2078-2085

[94] L.P. Grishchuk; V.M. Lipunov; K.A. Postnov; M.E. Prokhorov; B.S. Sathyaprakash Gravitational wave astronomy: in anticipation of first sources to be detected, Phys. Usp., Volume 44 (2001), p. 1 | arXiv

Cité par Sources :

Commentaires - Politique