Ces dernières années, les détecteurs interférométriques dʼondes gravitationnelles LIGO, GEO et Virgo ont atteint leur sensibilité nominale et accumulé quelques années de données pour la recherche dʼondes gravitationnelles. Nous résumons dans cet article tous les résultats obtenus à ce jour, qui couvrent lʼensemble des sources potentielles dʼondes gravitationnelles. La nouvelle génération de détecteurs au sol est en cours de construction. Ce réseau étendu devrait offrir une opportunité unique pour observer et comprendre notre Univers à travers les ondes gravitationnelles.
The first generation of ground-based interferometric gravitational wave detectors, LIGO, GEO, and Virgo, have operated and taken data at their design sensitivities over the last few years. The data has been examined for the presence of gravitational wave signals. Presented here is a comprehensive review of the most significant results. The network of detectors is currently being upgraded and extended, providing a large likelihood for observations. These future prospects will also be discussed.
Marie-Anne Bizouard 1 ; Maria Alessandra Papa 2, 3
@article{CRPHYS_2013__14_4_352_0, author = {Marie-Anne Bizouard and Maria Alessandra Papa}, title = {Searching for gravitational waves with the {LIGO} and {Virgo} interferometers}, journal = {Comptes Rendus. Physique}, pages = {352--365}, publisher = {Elsevier}, volume = {14}, number = {4}, year = {2013}, doi = {10.1016/j.crhy.2013.03.001}, language = {en}, }
TY - JOUR AU - Marie-Anne Bizouard AU - Maria Alessandra Papa TI - Searching for gravitational waves with the LIGO and Virgo interferometers JO - Comptes Rendus. Physique PY - 2013 SP - 352 EP - 365 VL - 14 IS - 4 PB - Elsevier DO - 10.1016/j.crhy.2013.03.001 LA - en ID - CRPHYS_2013__14_4_352_0 ER -
Marie-Anne Bizouard; Maria Alessandra Papa. Searching for gravitational waves with the LIGO and Virgo interferometers. Comptes Rendus. Physique, Volume 14 (2013) no. 4, pp. 352-365. doi : 10.1016/j.crhy.2013.03.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.03.001/
[1] Gravitation, WH Freeman & Co, 1973
[2] The confrontation between general relativity and experiment http://www.livingreviews.org/lrr-2006-3 Living Rev. Relativ. 9 (3)
[3] Gravitational wave tests of general relativity with the parameterized post-einsteinian framework, Phys. Rev. D, Volume 84 (2011), p. 062003 | arXiv | DOI
[4] et al. Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence, Phys. Rev. D, Volume 85 (2012), p. 082003 | arXiv | DOI
[5] et al. LIGO: the laser interferometer gravitational-wave observatory, Rep. Prog. Phys., Volume 72 (2009), p. 076901 | arXiv | DOI
[6] et al. Virgo status, Class. Quantum Gravity, Volume 25 (2008) no. 18, p. 184001 | DOI
[7] et al. The GEO 600 status, Class. Quantum Gravity, Volume 27 (2010), p. 084003 | DOI
[8] Advanced LIGO: the next generation of gravitational wave detectors, Class. Quantum Gravity, Volume 27 (2010) no. 8, p. 084006 | DOI
[9] et al. Plans for the upgrade of the gravitational wave detector virgo: Advanced virgo (T. Damour; R. Jantzen; R. Ruffini, eds.), Proceedings of the Twelfth Marcel Grossmann Meeting on General Relativity, World Scientific, Paris, 2012, p. 1738
[10] Large-scale gravitational wave telescope (LCGT), Int. J. Mod. Phys. D, Volume 20 (2011), pp. 1755-1770 | DOI
[11] et al. Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors, Class. Quantum Gravity, Volume 27 (2010), p. 173001
[12] et al. The international pulsar timing array project: Using pulsars as a gravitational wave detector, Class. Quantum Gravity, Volume 27 (2010), p. 084013 | arXiv | DOI
[13] Open questions in GRB physics, C. R. Phys., Volume 12 (2011), pp. 206-225 | arXiv | DOI
[14] Gamma-ray bursts, Rep. Prog. Phys., Volume 69 (2006), pp. 2259-2322 | arXiv | DOI
[15] Short-hard gamma-ray bursts, Phys. Rep., Volume 442 (2007), pp. 166-236 | arXiv
[16] Gravitational waves from spinning neutron stars (W. Becker, ed.), Neutron Stars and Pulsars, Springer-Verlag, Berlin/Heidelberg, 2009, pp. 651-683 | DOI
[17] Near optimal solution to the inverse problem for gravitational wave bursts, Phys. Rev. D, Volume 40 (1989), pp. 3884-3938 | DOI
[18] Networks of gravitational wave detectors and three figures of merit, Class. Quantum Gravity, Volume 28 (2011), p. 125023 | arXiv | DOI
[19] Timing measurements of the relativistic binary pulsar PSR B1913+16, Astrophys. J., Volume 722 (2010), pp. 1030-1034 | arXiv | DOI
[20] Massive black holes as Population III remnants, Astrophys. J., Volume 551 (2001), p. L27-L30 | arXiv | DOI
[21] The runaway growth of intermediate-mass black holes in dense star clusters, Astrophys. J., Volume 576 (2002), pp. 899-907 | arXiv | DOI
[22] Gravitational radiation from post-Newtonian sources and inspiralling compact binaries, Living Rev. Relativ., Volume 9 (2006), p. 3 http://www.livingreviews.org/lrr-2006-4 | arXiv
[23] The final merger of black-hole binaries, Annu. Rev. Nucl. Part. Sci., Volume 60 (2010), pp. 75-100 | arXiv | DOI
[24] Coalescence of black hole–neutron star binaries, Living Rev. Relativ., Volume 14 (2011), p. 6 http://www.livingreviews.org/lrr-2011-6
[25] Accurate evolutions of inspiralling neutron-star binaries: Prompt and delayed collapse to black hole, Phys. Rev. D, Volume 78 (2008), p. 084033 | arXiv | DOI
[26] et al. Search for gravitational waves from binary black hole inspiral, merger and ringdown in LIGO–Virgo data from 2009–2010 | arXiv
[27] et al. Search for gravitational waves from intermediate mass binary black holes, Phys. Rev. D, Volume 85 (2012), p. 102044 | arXiv
[28] Markov chain Monte Carlo methods for Bayesian gravitational radiation data analysis, Phys. Rev. D, Volume 58 (1998), p. 082001 | DOI
[29] Bayesian coherent analysis of in-spiral gravitational wave signals with a detector network, Phys. Rev. D, Volume 81 (2010), p. 062003 | arXiv | DOI
[30] et al. The effects of LIGO detector noise on a 15-dimensional Markov-chain Monte-Carlo analysis of gravitational-wave signals, Class. Quantum Gravity, Volume 27 (2010), p. 114009 | arXiv | DOI
[31] The gravitational wave signature of core-collapse supernovae, Class. Quantum Gravity, Volume 26 (2009), p. 063001 | arXiv | DOI
[32] Gravitational waves from gravitational collapse, Living Rev. Relativ., Volume 14 (2011), p. 1 http://www.livingreviews.org/lrr-2011-1
[33] Relativistic simulations of rotational core collapse. 2. Collapse dynamics and gravitational radiation, Astron. Astrophys., Volume 393 (2002), pp. 523-542 | arXiv | DOI
[34] The strongest cosmic magnets: soft gamma-ray repeaters and anomalous X-ray pulsars, Astron. Astrophys. Rev., Volume 15 (2008), pp. 225-287 | arXiv | DOI
[35] Physics of neutron star crusts, Living Rev. Relativ., Volume 11 (2008), p. 10 http://www.livingreviews.org/lrr-2008-10
[36] Cosmic Strings and Other Topological Defects, Cambridge University Press, Cambridge, 1994
[37] Gravitational wave bursts from cusps and kinks on cosmic strings, Phys. Rev. D, Volume 64 (2001), p. 064008 | arXiv | DOI
[38] Formation rates of black hole accretion disk gamma-ray bursts, Astrophys. J., Volume 526 (1999), pp. 152-177 | arXiv | DOI
[39] The protomagnetar model for gamma-ray bursts, Mon. Not. R. Astron. Soc., Volume 413 (2011), pp. 2031-2056 | DOI
[40] Short-hard gamma-ray bursts, Phys. Rep., Volume 442 (2007), pp. 166-236 | arXiv | DOI
[41] et al. The missing link: Merging neutron stars naturally produce jet-like structures and can power short gamma-ray bursts, Astrophys. J., Volume 732 (2011), p. L6 | arXiv
[42] The distances of short-hard GRBs and the SGR connection, Astrophys. J., Volume 640 (2006), pp. 849-853 | arXiv | DOI
[43] et al. Multimessenger science reach and analysis method for common sources of gravitational waves and high-energy neutrinos, Phys. Rev. D, Volume 85 (2012), p. 103004 | arXiv | DOI
[44] et al. Multimessenger astronomy with gravitational waves and high-energy neutrinos | arXiv
[45] Observational constraints on multi-messenger sources of gravitational waves and high-energy neutrinos, Phys. Rev. Lett., Volume 107 (2011), p. 251101 | arXiv
[46] et al. A survey about nothing: Monitoring a million supergiants for failed supernovae, Astrophys. J., Volume 684 (2008), pp. 1336-1342 | arXiv | DOI
[47] et al. Reconstruction of source location in a network of gravitational wave interferometric detectors, Phys. Rev. D, Volume 74 (2006), p. 082004 | arXiv | DOI
[48] Triangulation of gravitational wave sources with a network of detectors, New J. Phys., Volume 11 (2009), p. 123006 | arXiv | DOI
[49] et al. Implementation and testing of the first prompt search for electromagnetic counterparts to gravitational wave transients, Astron. Astrophys., Volume 539 (2012), p. A124 | arXiv | DOI
[50] et al. First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts, Astron. Astrophys., Volume 541 (2012), p. A155 | arXiv | DOI
[51] et al. Search for gravitational waves from low mass compact binary coalescence in LIGOʼs sixth science run and Virgoʼs science runs 2 and 3, Phys. Rev. D, Volume 85 (2012), p. 082002 | arXiv
[52] et al. Toward faithful templates for non-spinning binary black holes using the effective-one-body approach, Phys. Rev. D, Volume 76 (2007), p. 104049 | arXiv | DOI
[53] et al. Inspiral-merger-ringdown multipolar waveforms of nonspinning black-hole binaries using the effective-one-body formalism, Phys. Rev. D, Volume 84 (2011), p. 124052 | arXiv | DOI
[54] IC10 X-1/NGC300 X-1: the very immediate progenitors of BH–BH binaries, Astrophys. J., Volume 730 (2011), p. 140 | arXiv | DOI
[55] The coalescence rates of double black holes | arXiv
[56] et al. All-sky search for gravitational-wave bursts in the second joint LIGO–Virgo run, Phys. Rev. D, Volume 85 (2012), p. 122007 | arXiv
[57] et al. Search for gravitational waves associated with gamma-ray bursts during LIGO science run 6 and Virgo science runs 2 and 3, Astrophys. J., Volume 760 (2012), p. 12 | arXiv | DOI
[58] et al. Search for gravitational-wave inspiral signals associated with short Gamma-Ray Bursts during LIGOʼs fifth and Virgoʼs first science run, Astrophys. J., Volume 715 (2010), pp. 1453-1461 | arXiv | DOI
[59] et al. Search for gravitational-wave bursts associated with gamma-ray bursts using data from LIGO Science Run 5 and Virgo Science Run 1, Astrophys. J., Volume 715 (2010), pp. 1438-1452 | arXiv | DOI
[60] et al. Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs, Phys. Rev. D, Volume 77 (2008), p. 062004 | arXiv | DOI
[61] et al. Implications for the origin of GRB 051103 from LIGO observations, Astrophys. J., Volume 755 (2012), p. 2 | arXiv | DOI
[62] et al. Implications for the origin of GRB 070201 from LIGO observations, Astrophys. J., Volume 681 (2008), pp. 1419-1428 | arXiv | DOI
[63] Maximum gravitational-wave energy emissible in magnetar flares, Phys. Rev. D, Volume 83 (2011), p. 104014 | arXiv | DOI
[64] et al. Search for gravitational wave bursts from six magnetars, Astrophys. J., Volume 734 (2011), p. L35 | arXiv
[65] et al. Stacked search for gravitational waves from the 2006 SGR 1900+14 storm, Astrophys. J., Volume 701 (2009), p. L68-L74 | arXiv | DOI
[66] et al. A search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar, Phys. Rev. D, Volume 83 (2011), p. 042001 | arXiv | DOI
[67] et al. A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007 | arXiv
[68] et al. First LIGO search for gravitational wave bursts from cosmic (super)strings, Phys. Rev. D, Volume 80 (2009), p. 062002 | arXiv | DOI
[69] et al. Coherent searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run, Phys. Rev. D, Volume 76 (2007), p. 082001 | arXiv | DOI
[70] Gravitational radiation and rotation of accreting neutron stars, Astrophys. J., Volume 501 (1998), p. L89 | arXiv | DOI
[71] Deformations of accreting neutron star crusts and gravitational wave emission, Mon. Not. R. Astron. Soc., Volume 319 (2000), p. 902 | arXiv | DOI
[72] Gravitational waves from neutron stars with large toroidal B fields, Phys. Rev. D, Volume 66 (2002), p. 084025 | arXiv | DOI
[73] A new class of unstable modes of rotating relativistic stars, Astrophys. J., Volume 502 (1998), pp. 708-713 | arXiv | DOI
[74] Secular instability of rotating Newtonian stars, Astrophys. J., Volume 222 (1978), p. 281 | DOI
[75] Continuous gravitational waves from isolated galactic neutron stars in the advanced detector era, Phys. Rev. D, Volume 86 (2012), p. 124011 | arXiv | DOI
[76] R mode runaway and rapidly rotating neutron stars, Astrophys. J., Volume 534 (2000), p. L75 | arXiv | DOI
[77] Detecting gravitational waves from accreting neutron stars, Adv. Space Res., Volume 43 (2009), pp. 1049-1054 | arXiv | DOI
[78] Data analysis of gravitational – wave signals from spinning neutron stars. 1. The signal and its detection, Phys. Rev. D, Volume 58 (1998), p. 063001 | arXiv | DOI
[79] How to adapt broad-band gravitational-wave searches for r-modes, Phys. Rev. D, Volume 82 (2010), p. 104002 | arXiv | DOI
[80] The generalized F-statistic: Multiple detectors and multiple GW pulsars, Phys. Rev. D, Volume 72 (2005), p. 063006 | arXiv | DOI
[81] Bayesian estimation of pulsar parameters from gravitational wave data, Phys. Rev. D, Volume 72 (2005), p. 102002 | arXiv | DOI
[82] A method for detection of known sources of continuous gravitational wave signals in non-stationary data, Class. Quantum Gravity, Volume 27 (2010), p. 194016 | DOI
[83] et al. Setting upper limits on the strength of periodic gravitational waves using the first science data from the GEO 600 and LIGO detectors, Phys. Rev. D, Volume 69 (2004), p. 082004 | arXiv | DOI
[84] et al. Limits on gravitational wave emission from selected pulsars using LIGO data, Phys. Rev. Lett., Volume 94 (2005), p. 181103 | arXiv | DOI
[85] et al. Upper limits on gravitational wave emission from 78 radio pulsars, Phys. Rev. D, Volume 76 (2007), p. 042001 | arXiv | DOI
[86] et al. Searches for gravitational waves from known pulsars with S5 LIGO data, Astrophys. J., Volume 713 (2010), pp. 671-685 | arXiv | DOI
[87] et al. Beating the spin-down limit on gravitational wave emission from the Crab pulsar, Astrophys. J., Volume 683 (2008), p. L45-L50 | arXiv | DOI
[88] et al. Beating the spin-down limit on gravitational wave emission from the Vela pulsar, Astrophys. J., Volume 737 (2011), p. 93 | arXiv | DOI
[89] et al. Searching for gravitational waves from Cassiopeia A with LIGO, Class. Quantum Gravity, Volume 25 (2008), p. 235011 | arXiv | DOI
[90] et al. First search for gravitational waves from the youngest known neutron star, Astrophys. J., Volume 722 (2010), pp. 1504-1513 | arXiv | DOI
[91] et al. All-sky search for periodic gravitational waves in the full S5 LIGO data, Phys. Rev. D, Volume 85 (2012), p. 022001 | arXiv | DOI
[92] et al. Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data, Phys. Rev. D, Volume 87 (2013), p. 042001 | arXiv
[93] Amplification of gravitational waves in an isotropic universe, Sov. Phys. JETP, Volume 40 (1975), pp. 409-415
[94] Gravitational waves from electroweak phase transitions, Nucl. Phys. B, Volume 631 (2002), pp. 342-368 | arXiv | DOI
[95] Relic gravitational waves from string cosmology, Phys. Lett. B, Volume 361 (1995), pp. 45-51 | arXiv | DOI
[96] Spectrum of relic gravitational waves in string cosmology, Phys. Rev. D, Volume 55 (1997), pp. 3330-3336 | arXiv | DOI
[97] Topology of cosmic domains and strings, J. Phys. A, Volume 9 (1976), pp. 1387-1398 | DOI
[98] Gravitational radiation from cosmic (super)strings: Bursts, stochastic background, and observational windows, Phys. Rev. D, Volume 71 (2005), p. 063510 | arXiv | DOI
[99] Gravitational wave stochastic background from cosmic (super)strings, Phys. Rev. Lett., Volume 98 (2007), p. 111101 | arXiv | DOI
[100] et al. An upper limit on the stochastic gravitational-wave background of cosmological origin, Nature, Volume 460 (2009), pp. 990-994 | DOI
[101] Gravitational wave experiments and early universe cosmology, Phys. Rep., Volume 331 (2000), pp. 283-367 | arXiv | DOI
[102] A new cosmic microwave background constraint to primordial gravitational waves, Phys. Rev. Lett., Volume 97 (2006), p. 021301 | arXiv | DOI
[103] et al. Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000 Hz, Phys. Rev. D, Volume 85 (2012), p. 122001 | arXiv
[104] et al. First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds, Phys. Rev. D, Volume 76 (2007), p. 022001 | arXiv | DOI
[105] et al. Directional limits on persistent gravitational waves using LIGO S5 science data, Phys. Rev. Lett., Volume 107 (2011), p. 271102 | DOI
Cité par Sources :
Commentaires - Politique