[Comportement des globules rouges dans un écoulement microconfiné in vitro]
La grande déformabilité des globules rouges (GR) est essentielle pour optimiser les échanges gazeux entre le gaz et la microcirculation dans les tissus in vivo. Cette revue est focalisée sur le comportement des GR dans le flux confiné in vitro, tels que les capillaires à section circulaire, et les canaux rectangulaire, où au moins une dimension transversale est comparable à la taille des cellules. Résultats expérimentaux sur la vitesse et la forme des GR sont examinés conjointement avec prédictions des modèles et des simulations numériques. En dépit des progrès accomplis à ce jour, les conséquences physiopathologiques des modifications de la déformabilité des GR sont pas encore pleinement élucidées, et autres données expérimentales et de modélisation sont nécessaires. Les directions futures comprennent les nouvelles techniques d'application de la microfluidique pour enquêter sur le flux des GR dans des géométries complexes.
The high red blood cell (RBC) deformability is essential to optimal gas exchange between gas and tissues in microcirculation in vivo. This review is focused on the flow behavior of RBCs in microconfined geometries in vitro, such as circular section capillaries, rectangular channels and pores, where at least one transverse dimension is comparable to cell size. Experimental results on RBC velocity and shape are reviewed together with modeling predictions and numerical simulations. In spite of the progress made so far, the pathophysiological implications of altered RBC deformability are still to be fully elucidated, and more data from clinically-relevant experimental methods and modeling-based interpretation are needed. Future directions include the emerging application of microfluidics techniques to investigate RBC flow in complex geometries.
Mot clés : Globules rouges, Déformabilité, Capillaries, Microfluidique
Stefano Guido 1 ; Giovanna Tomaiuolo 1
@article{CRPHYS_2009__10_8_751_0, author = {Stefano Guido and Giovanna Tomaiuolo}, title = {Microconfined flow behavior of red blood cells \protect\emph{in vitro}}, journal = {Comptes Rendus. Physique}, pages = {751--763}, publisher = {Elsevier}, volume = {10}, number = {8}, year = {2009}, doi = {10.1016/j.crhy.2009.10.002}, language = {en}, }
Stefano Guido; Giovanna Tomaiuolo. Microconfined flow behavior of red blood cells in vitro. Comptes Rendus. Physique, Volume 10 (2009) no. 8, pp. 751-763. doi : 10.1016/j.crhy.2009.10.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.10.002/
[1] Effect of red blood cell shape on oxygen transport in capillaries, Math. Biosci., Volume 116 (1993), pp. 89-110
[2] Overview of the microcirculation, Microcirculation, Academic Press, 2008
[3] In vivo high-speed imaging of individual cells in fast blood flow, J. Biomed. Opt., Volume 11 (2006), p. 054034
[4] The role of the sinus wall in the passage of erythrocytes through the spleen, Blood, Volume 41 (1973), pp. 529-537
[5] Dynamics of erythrocyte motion in filtration tests and in vivo flow, Scand. J. Clin. Lab. Invest. Suppl., Volume 156 (1981), pp. 77-82
[6] Nanomedicine, Volume IIA: Biocompatibility, Landes Bioscience, Georgetown, TX, 2003
[7] Deformability of red blood cells and its relation to blood trauma in rotary blood pumps, Artif. Organs., Volume 31 (2007), pp. 352-358
[8] The suspension stability of the blood, Physiol. Rev., Volume 9 (1929), pp. 241-274
[9] The viscosity of the blood in narrow capillary tubes, Am. J. Physiol., Volume 96 (1931), pp. 562-568
[10] Flow of blood through narrow capillaries. Rheological mechanisms determining capillary hematocrit and apparent viscosity, Biorheology, Volume 17 (1980), pp. 183-189
[11] Blood flow in small tubes, Handbook of Physiology: The Cardiovascular System IV, American Physiological Society, Bethesda, MD, 1984
[12] Pressure–flow relations in blood and lymph microcirculation, Handbook of Physiology: The Cardiovascular System IV, American Physiological Society, Bethesda, MD, 1984
[13] Mechanics of blood flow in the microcirculation, Handbook of Biomechanics, McGraw–Hill, Englewood Cliffs, 1986
[14] Red blood cell mechanics and capillary blood rheology, Cell Biophys., Volume 18 (1991), pp. 231-251
[15] Mechanics of blood flow in the microcirculation, Biological Fluid Dynamics, Company of Biologists, London, 1995, pp. 305-321
[16] Mechanics of red blood cells and blood flow in narrow tubes, Modeling and Simulation of Capsules and Biological Cells, Chapman & Hall, London, 2003
[17] Biophysical aspects of blood flow in the microvasculature, Cardiovasc. Res., Volume 32 (1996), pp. 654-667
[18] Blood flow structure related to red cell flow: A determinant of blood fluidity in narrow microvessels, Jpn. J. Physiol., Volume 51 (2001), pp. 19-30
[19] Biomechanics of microcirculatory blood perfusion, Annu. Rev. Biomech., Volume 1 (1999), pp. 73-102
[20] Cellular fluid mechanics, Annu. Rev. Fluid Mech., Volume 34 (2002), pp. 211-232
[21] Blood flow and permeability in microvessels, Fluid Dyn. Res., Volume 37 (2005), pp. 82-132
[22] Computer modeling of red blood cell rheology in the microcirculation: A brief overview, Ann. Biomed. Eng., Volume 33 (2005), pp. 1724-1727
[23] Mechanical and adhesive properties of healthy and diseased red blood cells, Microcirculation, Academic Press, 2008
[24] Microvascular rheology and hemodynamics, Microcirculation, Volume 12 (2005), pp. 5-15
[25] Role of red blood cell flow behavior in hemodynamics and hemostasis, Expert Rev. Cardiovasc. Ther., Volume 5 (2007), pp. 743-752
[26] Cellular-scale hydrodynamics, Biomed. Mater., Volume 3 (2008), p. 034011
[27] Red cell deformability and its relevance to blood flow, Annu. Rev. Physiol., Volume 49 (1987), pp. 177-192
[28] Blood-on-a-chip, Annu. Rev. Biomed. Eng., Volume 7 (2005), pp. 77-103
[29] Red cell rheology in stomatocyte–echinocyte transformation: Roles of cell geometry and cell shape, Blood, Volume 67 (1986), pp. 1110-1118
[30] Human red blood cells: Rheological aspects, uptake, and release of cytotoxic drugs, Crit. Rev. Clin. Lab. Sci., Volume 41 (2004), pp. 159-188
[31] Distribution of size and shape in populations of normal human red cells, Circ. Res., Volume 22 (1968), pp. 405-422
[32] Rheologic properties of senescent erythrocytes: Loss of surface area and volume with red blood cell age, Blood, Volume 79 (1992), pp. 1351-1358
[33] Geometric, osmotic, and membrane mechanical properties of density-separated human red cells, Blood, Volume 59 (1982), pp. 1121-1127
[34] Red cell biochemical anatomy and membrane properties, Annu. Rev. Physiol., Volume 49 (1987), pp. 237-248
[35] Red blood cell shapes and shape transformations: Newtonian mechanics of a composite membrane, Soft Matter, Volume 4 (2008), p. 83
[36] Erythrocyte membrane elasticity and viscosity, Annu. Rev. Physiol., Volume 49 (1987), pp. 209-219
[37] Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane, Biophys. J., Volume 24 (1978), pp. 463-487
[38] New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells, Biophys. J., Volume 13 (1973), pp. 941-954
[39] Static and dynamic rigidities of normal and sickle erythrocytes. Major influence of cell hemoglobin concentration, J. Clin. Invest., Volume 73 (1984), pp. 477-488
[40] A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers, Biophys. J., Volume 76 (1999), pp. 1145-1151
[41] Improved measurements of the erythrocyte geometry, Microvasc. Res., Volume 4 (1972), pp. 335-347
[42] Geometry of the human erythrocyte. I. Effect of albumin on cell geometry, Biophys. J., Volume 15 (1975), pp. 205-222
[43] Biomechanics, Springer, New York, 1981
[44] Geometric, osmotic, and membrane mechanical properties of density-separated human red cells, Blood, Volume 59 (1982), pp. 1121-1127
[45] Red cell and ghost viscoelasticity. Effects of hemoglobin concentration and in vivo aging, Biophys. J., Volume 43 (1983), pp. 63-73
[46] Geometry of neonatal and adult red blood cells, Pediatr. Res., Volume 17 (1983), pp. 250-253
[47] Mechanical and geometrical properties of density-separated neonatal and adult erythrocytes, Pediatr. Res., Volume 34 (1993), pp. 688-693
[48] Flow behavior of neonatal and adult erythrocytes in narrow capillaries, Microvasc. Res., Volume 37 (1989), pp. 267-279
[49] Treatment of myeloproliferative disorders with hydroxyurea: Effects on red blood cell geometry and deformability, Blood, Volume 91 (1998), pp. 3986-3991
[50] Deformability and geometry of neonatal erythrocytes with irregular shapes, Pediatr. Res., Volume 45 (1999), pp. 114-119
[51] Elastic area compressibility modulus of red cell membrane, Biophys. J., Volume 16 (1976), pp. 585-595
[52] Membrane viscoelasticity, Biophys. J., Volume 16 (1976), pp. 1-11
[53] Effects of an amphipathic drug on the rheological properties of the cell membrane, Blood Cells, Molecules, and Diseases, Volume 24 (1998), pp. 552-559
[54] Blood flow and red blood cell deformation in nonuniform capillaries: Effects of the endothelial surface layer, Microcirculation, Volume 9 (2002), pp. 189-196
[55] Apparent viscosity of human blood in a high static magnetic field, J. Magn. Magn. Mater., Volume 225 (2001), pp. 180-186
[56] The optical stretcher: A novel laser tool to micromanipulate cells, Biophys. J., Volume 81 (2001), pp. 767-784
[57] Deformation-enhanced fluctuations in the red cell skeleton with theoretical relations to elasticity, connectivity, and spectrin unfolding, Biophys. J., Volume 81 (2001), pp. 3178-3192
[58] Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton, Biophys. J., Volume 81 (2001), pp. 43-56
[59] Elasticity of the human red blood cell skeleton, Biorheology, Volume 40 (2003), pp. 247-251
[60] Uniaxial loading of the red cell membrane, J. Biomech., Volume 5 (1972), pp. 501-509
[61] Strain energy function of red blood cell membranes, Biophys. J., Volume 13 (1973), pp. 245-264
[62] Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests, Biophys. J., Volume 43 (1983), pp. 27-30
[63] Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition, Biophys. J., Volume 69 (1995), pp. 478-488
[64] Energy of dissociation of lipid bilayer from the membrane skeleton of red blood cells, Biophys. J., Volume 72 (1997), pp. 2669-2678
[65] Atomic force pulling: Probing the local elasticity of the cell membrane, Eur. Biophys. J., Volume 30 (2001), pp. 83-90
[66] Dynamic reflection interference contrast (RIC) microscopy: A new method to study surface excitations of cells and to measure membrane bending elastic moduli, J. Phys. Fr., Volume 48 (1987), pp. 2139-2151
[67] Bending undulations and elasticity of the erythrocyte membrane: Effects of cell shape and membrane organization, Eur. Biophys. J., Volume 18 (1990), pp. 203-219
[68] Linear response of the human erythrocyte to mechanical stress, Phys. Rev. A, Volume 45 (1992), pp. 4116-4131
[69] Local membrane curvature affects spontaneous membrane fluctuation characteristics, Mol. Membr. Biol., Volume 20 (2003), pp. 155-162
[70] Physical measurements of bilayerskeletal separation forces, Ann. Biomed. Eng., Volume 23 (1995), pp. 308-321
[71] A new method to study shape recovery of red blood cells using multiple optical trapping, Biophys. J., Volume 69 (1995), pp. 1666-1673
[72] Thermoelasticity of red blood cell membrane, Biophys. J., Volume 26 (1979), pp. 115-131
[73] Molecular maps of red cell deformation: Hidden elasticity and in situ connectivity, Science, New Series, Volume 266 (1994), pp. 1032-1035
[74] Kinematics of red cell aspiration by fluorescence-imaged microdeformation, Biophys. J., Volume 71 (1996), pp. 1680-1694
[75] Direct measures of large, anisotropic strains in deformation of the erythrocyte cytoskeleton, Biophys. J., Volume 77 (1999), pp. 853-864
[76] Frequency spectrum of the flicker phenomenon in erythrocytes, J. Phys. Fr., Volume 36 (1975), pp. 1035-1047
[77] Defocusing microscopy: An approach for red blood cell optics, Appl. Phys. Lett., Volume 88 (2006), p. 133901
[78] Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum, PNAS, Volume 105 (2008), pp. 13730-13735
[79] Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation, Blood, Volume 45 (1975), pp. 29-43
[80] Viscoelasticity of the human red blood cell, Am. J. Physiol. Cell. Physiol., Volume 293 (2007), p. C597-C605
[81] The nonlinear mechanical response of the red blood cell, Phys. Biol., Volume 5 (2008), p. 036007
[82] Do hemorheological laboratory assays have any clinical relevance?, Clin. Hemorheol., Volume 16 (1996), pp. 17-22
[83] Individual red blood cell transit times during flow through cylindrical micropores, Clin. Hemorheol., Volume 8 (1988), pp. 453-459
[84] Deformability of red blood cells from different species studied by resistive pulse shape analysis technique, Biorheology, Volume 33 (1996), pp. 169-179
[85] Osmotic gradient ektacytometry: Comprehensive characterization of red cell volume and surface maintenance, Blood, Volume 61 (1983), pp. 899-910
[86] Biology of red cells: Non-nucleated erythrocytes as fluid drop-like cell fragments, Int. J. Microcirc. Clin. Exp., Volume 3 (1984), pp. 161-196
[87] Measurement of the distribution of red blood cell deformability using an automated rheoscope, Cytometry, Volume 50 (2002), pp. 313-325
[88] Red blood cells: Change in shape in capillaries, Science, Volume 142 (1963), pp. 1319-1321
[89] In vivo and in vitro measurements of red cell velocity under epifluorescence microscopy, Microvasc. Res., Volume 38 (1989), pp. 110-124
[90] Measurement of RBC deformation and velocity in capillaries in vivo, Microvasc. Res., Volume 71 (2006), pp. 212-217
[91] Velocity profiles of blood platelets and red blood cells flowing in arterioles of the rabbit mesentery, Circ. Res., Volume 59 (1986), pp. 505-514
[92] Three-dimensional observations of red blood cell deformation in capillaries, Blood Cells, Volume 6 (1980), pp. 231-239
[93] Deformation of red blood cells in capillaries, Science, Volume 164 (1969), pp. 717-719
[94] Motion, deformation, and interaction of blood cells and plasma during flow through narrow capillary tubes, Blood Cells, Volume 6 (1980), pp. 799-812
[95] Red blood cell deformability in microconfined shear flow, Soft Matter, Volume 5 (2009), pp. 3736-3740
[96] Mechanisms of dynamic flow adaptation of mammalian erythrocytes, Naturwissenschaften, Volume 69 (1982), pp. 294-296
[97] Motion of nonaxisymmetric red blood cells in cylindrical capillaries, J. Biomech. Eng., Volume 111 (1989), pp. 147-151
[98] Flow of axisymmetric red blood cells in narrow capillaries, J. Fluid Mech., Volume 163 (1986), pp. 405-423
[99] Capillary blood flow. I. Erythrocyte deformation in glass capillaries, Microvasc. Res., Volume 2 (1970), pp. 409-419
[100] The endothelial glycocalyx: Composition, functions, and visualization, Pflügers Archiv: Eur. J. Physiol., Volume 454 (2007), pp. 345-359
[101] Resistance to blood flow in microvessels in vivo, Circ. Res., Volume 75 (1994), pp. 904-915
[102] The Fahraeus effect in narrow capillaries (i.d. 3.3 to 11.0 μm), Microvasc. Res., Volume 18 (1979), pp. 33-47
[103] Correlation between erythrocytes deformability and size: A study using a microchannel based cell analyzer, Microvasc. Res., Volume 73 (2007), pp. 7-13
[104] Basic theory of blood flow in capillaries, Microvasc. Res., Volume 1 (1986), pp. 23-34
[105] Pressure-forcing of tightly fitting pellets along fluid-filled elastic tubes, J. Fluid Mech., Volume 34 (1968), pp. 113-143
[106] A mathematical model for red cell motion in narrow capillary surrounded by tissue, Appl. Math. Comp., Volume 196 (2008), pp. 193-199
[107] Flow-dependent rheological properties of blood in capillaries, Microvasc. Res., Volume 34 (1987), pp. 46-58
[108] Mechanics and Thermodynamics of Biomembranes, CRC, Boca Raton, FL, 1980
[109] New guidelines for hemorheological laboratory techniques, Clin. Hemorheol. Microcircul., Volume 42 (2009), pp. 75-97
[110] A study of blood flow in minute vessels of the pancreatic region of the rat with reference to intermittent corpuscular flow in individual capillaries, Quart. J. Exp. Physiol., Volume 44 (1959), p. 149
[111] Capillary blood flow. III. Deformable model cells compared to erythrocytes in vitro, Microvasc. Res., Volume 2 (1970), pp. 434-442
[112] Elastic deformations of red blood cells, Biorheology, Volume 10 (1978), pp. 211-221
[113] A two-dimensional model for capillary flow of an asymmetric cell, Microvasc. Res., Volume 24 (1982), pp. 194-203
[114] A model for RBC motion in glycocalyx-lined capillaries, Am. J. Physiol., Volume 274 (1998), p. H1016-H1022
[115] The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries, Microvasc. Res., Volume 55 (1998), pp. 77-91
[116] Analysis of red blood cell motion through cylindrical micropores: Effects of cell properties, Biophys. J., Volume 71 (1996), pp. 1095-1101
[117] Numerical simulation of the flow-induced deformation of red blood cells, Ann. Biomed. Eng., Volume 31 (2003), p. 1194
[118] Axisymmetric motion of a file of red blood cells through capillaries, Phys. Fluids, Volume 17 (2005), p. 031503
[119] Numerical simulation of cell motion in tube flow, Ann. Biomed. Eng., Volume 33 (2005), pp. 165-178
[120] Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models, Biophys. J., Volume 75 (1998), pp. 1573-1583
[121] Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration, Biophys. J., Volume 75 (1998), pp. 1584-1597
[122] Cytoskeletal dynamics of human erythrocyte, PNAS, Volume 104 (2007), pp. 4937-4942
[123] Shape transitions of fluid vesicles and red blood cells in capillary flows, PNAS, Volume 102 (2005), pp. 14159-14164
[124] Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries, PNAS, Volume 106 (2009), pp. 6039-6043
[125] Accurate coarse-grained modeling of red blood cells, Phys. Rev. Lett., Volume 101 (2008), p. 118105
[126] Optically accessible microchannels formed in a single-crystal silicon substrate for studies of blood rheology, Microvasc. Res., Volume 44 (1992), pp. 226-240
[127] Variation in red blood cell deformability and possible consequences for oxygen transport to tissue, Microvasc. Res., Volume 47 (1994), pp. 222-231
[128] Manipulation and flow of biological fluids in straight channels micromachined in silicon, Clin. Chem., Volume 40 (1994), pp. 43-47
[129] Fabrication of in vitro microvascular blood flow systems by photolithography, Microvasc. Res., Volume 46 (1993), pp. 394-400
[130] A silicon micromachined device for use in blood cell deformability studies, IEEE Trans. Biomed. Eng., Volume 42 (1995), pp. 751-761
[131] A novel instrument for studying the flow behaviour of erythrocytes through microchannels simulating human blood capillaries, Microvasc. Res., Volume 53 (1997), pp. 272-281
[132] Deformation and flow of red blood cells in a synthetic lattice: Evidence for an active cytoskeleton, Biophys. J., Volume 68 (1995), pp. 2224-2232
[133] Direct measurement of erythrocyte deformability in diabetes mellitus with a transparent microchannel capillary model and high-speed video camera system, Microvasc. Res., Volume 61 (2001), pp. 231-239
[134] A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum infected erythrocytes, PNAS, Volume 100 (2003), pp. 14618-14622
[135] High-speed microfluidic differential manometer for cellular-scale hydrodynamics, PNAS, Volume 103 (2006), pp. 538-542
[136] Microscopic investigation of erythrocyte deformation dynamics, Biorheology, Volume 43 (2006), pp. 747-765
[137] Vesicles in Poiseuille flow, Phys. Rev. Lett., Volume 102 (2009), p. 148102
[138] Geometrical focusing of cells in a microfluidic device: An approach to separate blood plasma, Biorheology, Volume 43 (2006), pp. 147-159
[139] Prototype of an in vitro model of the microcirculation, Microvasc. Res., Volume 65 (2003), pp. 132-136
[140] Direct measurement of the impact of impaired erythrocyte deformability on microvascular network perfusion in a microfluidic device, Lab Chip, Volume 6 (2006), pp. 914-920
[141] Mechanical response of human red blood cells in health and disease: Some structure–property–function relationships, J. Mater. Res., Volume 21 (2006), pp. 1871-1877
[142] Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by Raman Tweezers, Opt. Express, Volume 16 (2008), pp. 7943-7957
[143] Role of red blood cell flow behavior in hemodynamics and hemostasis, Expert Rev. Cardiovasc. Ther., Volume 5 (2007), pp. 744-752
[144] Axisymmetric motion of capsules through cylindrical channels, J. Fluid Mech., Volume 348 (1997), pp. 349-376
[145] Capillary blood flow. II. Deformable model cells in tube flow, Microvasc. Res., Volume 2 (1970), pp. 420-433
[146] Deformation of vesicles flowing through capillaries, Europhys. Lett., Volume 68 (2004), pp. 398-404
[147] Experimental investigation of a bioartificial capsule flowing in a narrow tube, J. Fluid Mech., Volume 547 (2006), pp. 149-173
[148] Modeling experiments of a single red blood cell moving in a capillary blood vessel, Microvasc. Res., Volume 1 (1969), pp. 221-243
[149] Transient response of a capsule subjected to varying flow conditions: Effect of internal fluid viscosity and membrane elasticity, Phys. Fluid, Volume 12 (2000), pp. 948-957
[150] Vesicle dynamics in shear and capillary flows, J. Phys.: Condens. Matter, Volume 17 (2005), p. S3439-S3444
[151] Drop deformation in microconfined shear flow, Phys. Rev. Lett., Volume 97 (2006), p. 054502
Cité par Sources :
Commentaires - Politique