Comptes Rendus
Microconfined flow behavior of red blood cells in vitro
[Comportement des globules rouges dans un écoulement microconfiné in vitro]
Comptes Rendus. Physique, Volume 10 (2009) no. 8, pp. 751-763.

La grande déformabilité des globules rouges (GR) est essentielle pour optimiser les échanges gazeux entre le gaz et la microcirculation dans les tissus in vivo. Cette revue est focalisée sur le comportement des GR dans le flux confiné in vitro, tels que les capillaires à section circulaire, et les canaux rectangulaire, où au moins une dimension transversale est comparable à la taille des cellules. Résultats expérimentaux sur la vitesse et la forme des GR sont examinés conjointement avec prédictions des modèles et des simulations numériques. En dépit des progrès accomplis à ce jour, les conséquences physiopathologiques des modifications de la déformabilité des GR sont pas encore pleinement élucidées, et autres données expérimentales et de modélisation sont nécessaires. Les directions futures comprennent les nouvelles techniques d'application de la microfluidique pour enquêter sur le flux des GR dans des géométries complexes.

The high red blood cell (RBC) deformability is essential to optimal gas exchange between gas and tissues in microcirculation in vivo. This review is focused on the flow behavior of RBCs in microconfined geometries in vitro, such as circular section capillaries, rectangular channels and pores, where at least one transverse dimension is comparable to cell size. Experimental results on RBC velocity and shape are reviewed together with modeling predictions and numerical simulations. In spite of the progress made so far, the pathophysiological implications of altered RBC deformability are still to be fully elucidated, and more data from clinically-relevant experimental methods and modeling-based interpretation are needed. Future directions include the emerging application of microfluidics techniques to investigate RBC flow in complex geometries.

Publié le :
DOI : 10.1016/j.crhy.2009.10.002
Keywords: Red blood cell, Deformability, Microcapillary, Microfluidics
Mot clés : Globules rouges, Déformabilité, Capillaries, Microfluidique

Stefano Guido 1 ; Giovanna Tomaiuolo 1

1 Dipartimento di Ingegneria chimica, Università di Napoli Federico II, 80125 Napoli, Italy
@article{CRPHYS_2009__10_8_751_0,
     author = {Stefano Guido and Giovanna Tomaiuolo},
     title = {Microconfined flow behavior of red blood cells \protect\emph{in vitro}},
     journal = {Comptes Rendus. Physique},
     pages = {751--763},
     publisher = {Elsevier},
     volume = {10},
     number = {8},
     year = {2009},
     doi = {10.1016/j.crhy.2009.10.002},
     language = {en},
}
TY  - JOUR
AU  - Stefano Guido
AU  - Giovanna Tomaiuolo
TI  - Microconfined flow behavior of red blood cells in vitro
JO  - Comptes Rendus. Physique
PY  - 2009
SP  - 751
EP  - 763
VL  - 10
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2009.10.002
LA  - en
ID  - CRPHYS_2009__10_8_751_0
ER  - 
%0 Journal Article
%A Stefano Guido
%A Giovanna Tomaiuolo
%T Microconfined flow behavior of red blood cells in vitro
%J Comptes Rendus. Physique
%D 2009
%P 751-763
%V 10
%N 8
%I Elsevier
%R 10.1016/j.crhy.2009.10.002
%G en
%F CRPHYS_2009__10_8_751_0
Stefano Guido; Giovanna Tomaiuolo. Microconfined flow behavior of red blood cells in vitro. Comptes Rendus. Physique, Volume 10 (2009) no. 8, pp. 751-763. doi : 10.1016/j.crhy.2009.10.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.10.002/

[1] C.H. Wang; A.S. Popel Effect of red blood cell shape on oxygen transport in capillaries, Math. Biosci., Volume 116 (1993), pp. 89-110

[2] P.C. Johnson Overview of the microcirculation, Microcirculation, Academic Press, 2008

[3] V.P. Zharov; E.I. Galanzha; Y. Menyaev; V.V. Tuchin In vivo high-speed imaging of individual cells in fast blood flow, J. Biomed. Opt., Volume 11 (2006), p. 054034

[4] L.T. Chen; L. Weiss The role of the sinus wall in the passage of erythrocytes through the spleen, Blood, Volume 41 (1973), pp. 529-537

[5] G.R. Cokelet Dynamics of erythrocyte motion in filtration tests and in vivo flow, Scand. J. Clin. Lab. Invest. Suppl., Volume 156 (1981), pp. 77-82

[6] R.A. Freitas Nanomedicine, Volume IIA: Biocompatibility, Landes Bioscience, Georgetown, TX, 2003

[7] N. Watanabe; D. Sakota; K. Ohuchi; S. Takatani Deformability of red blood cells and its relation to blood trauma in rotary blood pumps, Artif. Organs., Volume 31 (2007), pp. 352-358

[8] R. Fahraeus The suspension stability of the blood, Physiol. Rev., Volume 9 (1929), pp. 241-274

[9] R. Fahraeus; T. Lindqvist The viscosity of the blood in narrow capillary tubes, Am. J. Physiol., Volume 96 (1931), pp. 562-568

[10] P. Gaethgens Flow of blood through narrow capillaries. Rheological mechanisms determining capillary hematocrit and apparent viscosity, Biorheology, Volume 17 (1980), pp. 183-189

[11] S. Chien; S. Usami; R. Skalak Blood flow in small tubes, Handbook of Physiology: The Cardiovascular System IV, American Physiological Society, Bethesda, MD, 1984

[12] B.W. Zweifach; H.H. Lipowsky Pressure–flow relations in blood and lymph microcirculation, Handbook of Physiology: The Cardiovascular System IV, American Physiological Society, Bethesda, MD, 1984

[13] H.H. Lipowsky Mechanics of blood flow in the microcirculation, Handbook of Biomechanics, McGraw–Hill, Englewood Cliffs, 1986

[14] T.W. Secomb Red blood cell mechanics and capillary blood rheology, Cell Biophys., Volume 18 (1991), pp. 231-251

[15] T.W. Secomb Mechanics of blood flow in the microcirculation, Biological Fluid Dynamics, Company of Biologists, London, 1995, pp. 305-321

[16] T.W. Secomb Mechanics of red blood cells and blood flow in narrow tubes, Modeling and Simulation of Capsules and Biological Cells, Chapman & Hall, London, 2003

[17] A.R. Pries; T.W. Secomb; P. Gaehtgens Biophysical aspects of blood flow in the microvasculature, Cardiovasc. Res., Volume 32 (1996), pp. 654-667

[18] G. Mchedlishvili; N. Maeda Blood flow structure related to red cell flow: A determinant of blood fluidity in narrow microvessels, Jpn. J. Physiol., Volume 51 (2001), pp. 19-30

[19] G.W. Schmid-Schönbein Biomechanics of microcirculatory blood perfusion, Annu. Rev. Biomech., Volume 1 (1999), pp. 73-102

[20] R.D. Kamm Cellular fluid mechanics, Annu. Rev. Fluid Mech., Volume 34 (2002), pp. 211-232

[21] M. Sugihara-Sekia; B.M. Fu Blood flow and permeability in microvessels, Fluid Dyn. Res., Volume 37 (2005), pp. 82-132

[22] V. Cristini; G.S. Kassab Computer modeling of red blood cell rheology in the microcirculation: A brief overview, Ann. Biomed. Eng., Volume 33 (2005), pp. 1724-1727

[23] B. M Cooke; C.T. Lim Mechanical and adhesive properties of healthy and diseased red blood cells, Microcirculation, Academic Press, 2008

[24] H.H. Lipowsky Microvascular rheology and hemodynamics, Microcirculation, Volume 12 (2005), pp. 5-15

[25] G. Barshtein; R. Ben-Ami; S. Yedgar Role of red blood cell flow behavior in hemodynamics and hemostasis, Expert Rev. Cardiovasc. Ther., Volume 5 (2007), pp. 743-752

[26] M. Abkarian; M. Faivre; R. Horton; K. Smistrup; C.A. Best-Popescu; H.A. Stone Cellular-scale hydrodynamics, Biomed. Mater., Volume 3 (2008), p. 034011

[27] S. Chien Red cell deformability and its relevance to blood flow, Annu. Rev. Physiol., Volume 49 (1987), pp. 177-192

[28] M. Toner; D. Irimia Blood-on-a-chip, Annu. Rev. Biomed. Eng., Volume 7 (2005), pp. 77-103

[29] W.H. Reinhart; S. Chien Red cell rheology in stomatocyte–echinocyte transformation: Roles of cell geometry and cell shape, Blood, Volume 67 (1986), pp. 1110-1118

[30] H. Dumez; W.H. Reinhart; G. Guetens; E.A. de Bruijn Human red blood cells: Rheological aspects, uptake, and release of cytotoxic drugs, Crit. Rev. Clin. Lab. Sci., Volume 41 (2004), pp. 159-188

[31] P.B. Canham; A.C. Burton Distribution of size and shape in populations of normal human red cells, Circ. Res., Volume 22 (1968), pp. 405-422

[32] R.E. Waugh; M. Narla; C.W. Jackson; T.J. Mueller; T. Suzuki; G.L. Dale Rheologic properties of senescent erythrocytes: Loss of surface area and volume with red blood cell age, Blood, Volume 79 (1992), pp. 1351-1358

[33] O. Linderkamp; H.J. Meiselman Geometric, osmotic, and membrane mechanical properties of density-separated human red cells, Blood, Volume 59 (1982), pp. 1121-1127

[34] J.A. Chasis; S.B. Shohet Red cell biochemical anatomy and membrane properties, Annu. Rev. Physiol., Volume 49 (1987), pp. 237-248

[35] H.K. Gerald Lim; M. Wortis; R. Mukhopadhyay Red blood cell shapes and shape transformations: Newtonian mechanics of a composite membrane, Soft Matter, Volume 4 (2008), p. 83

[36] R.M. Hochmuth; R.E. Waugh Erythrocyte membrane elasticity and viscosity, Annu. Rev. Physiol., Volume 49 (1987), pp. 209-219

[37] S. Chien; K.-L.P. Sung; R. Skalak; S. Usami Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane, Biophys. J., Volume 24 (1978), pp. 463-487

[38] E.A. Evans New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells, Biophys. J., Volume 13 (1973), pp. 941-954

[39] E. Evans; N. Mohandas; A. Leung Static and dynamic rigidities of normal and sickle erythrocytes. Major influence of cell hemoglobin concentration, J. Clin. Invest., Volume 73 (1984), pp. 477-488

[40] S. Hénon; G. Lenormand; A. Richert; F. Gallet A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers, Biophys. J., Volume 76 (1999), pp. 1145-1151

[41] E.A. Evans; Y.C. Fung Improved measurements of the erythrocyte geometry, Microvasc. Res., Volume 4 (1972), pp. 335-347

[42] A.W.L. Jay Geometry of the human erythrocyte. I. Effect of albumin on cell geometry, Biophys. J., Volume 15 (1975), pp. 205-222

[43] Y.C. Fung Biomechanics, Springer, New York, 1981

[44] O.L. Linderkamp; H.J. Meiselman Geometric, osmotic, and membrane mechanical properties of density-separated human red cells, Blood, Volume 59 (1982), pp. 1121-1127

[45] G.B. Nash; H.J. Meiselman Red cell and ghost viscoelasticity. Effects of hemoglobin concentration and in vivo aging, Biophys. J., Volume 43 (1983), pp. 63-73

[46] O.L. Linderkamp; P.Y. Wu; H.J. Meiselman Geometry of neonatal and adult red blood cells, Pediatr. Res., Volume 17 (1983), pp. 250-253

[47] O.L. Linderkamp; E. Friederichs; H.J. Meiselman Mechanical and geometrical properties of density-separated neonatal and adult erythrocytes, Pediatr. Res., Volume 34 (1993), pp. 688-693

[48] A. Stadler; O. Linderkamp Flow behavior of neonatal and adult erythrocytes in narrow capillaries, Microvasc. Res., Volume 37 (1989), pp. 267-279

[49] K.G. Engstrom; E. Lofvenberg Treatment of myeloproliferative disorders with hydroxyurea: Effects on red blood cell geometry and deformability, Blood, Volume 91 (1998), pp. 3986-3991

[50] P. Ruef; O. Linderkamp Deformability and geometry of neonatal erythrocytes with irregular shapes, Pediatr. Res., Volume 45 (1999), pp. 114-119

[51] E.A. Evans; R. Waugh; L. Melnik Elastic area compressibility modulus of red cell membrane, Biophys. J., Volume 16 (1976), pp. 585-595

[52] E.A. Evans; R.M. Hochmuth Membrane viscoelasticity, Biophys. J., Volume 16 (1976), pp. 1-11

[53] G. Bazzoni; M. Rasia Effects of an amphipathic drug on the rheological properties of the cell membrane, Blood Cells, Molecules, and Diseases, Volume 24 (1998), pp. 552-559

[54] T.W. Secomb; R. Hsu; A.R. Pries Blood flow and red blood cell deformation in nonuniform capillaries: Effects of the endothelial surface layer, Microcirculation, Volume 9 (2002), pp. 189-196

[55] Y. Haik; V. Pai; C.-J. Chen Apparent viscosity of human blood in a high static magnetic field, J. Magn. Magn. Mater., Volume 225 (2001), pp. 180-186

[56] J. Guck; R. Ananthakrishnan; H. Mahmood; T.J. Moon; C.C. Cunningham; J. Kas The optical stretcher: A novel laser tool to micromanipulate cells, Biophys. J., Volume 81 (2001), pp. 767-784

[57] J.C.M. Lee; D.E. Discher Deformation-enhanced fluctuations in the red cell skeleton with theoretical relations to elasticity, connectivity, and spectrin unfolding, Biophys. J., Volume 81 (2001), pp. 3178-3192

[58] G. Lenormand; S. Hénon; A. Richert; J. Siméon; F. Gallet Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton, Biophys. J., Volume 81 (2001), pp. 43-56

[59] G. Lenormand; S. Hénon; A. Richert; J. Siméon; F. Gallet Elasticity of the human red blood cell skeleton, Biorheology, Volume 40 (2003), pp. 247-251

[60] R.M. Hochmuth; N. Mohandas Uniaxial loading of the red cell membrane, J. Biomech., Volume 5 (1972), pp. 501-509

[61] R. Skalak; A. Tozeren; R.P. Zarda; S. Chien Strain energy function of red blood cell membranes, Biophys. J., Volume 13 (1973), pp. 245-264

[62] E.A. Evans Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests, Biophys. J., Volume 43 (1983), pp. 27-30

[63] H. Strey; M. Peterson; E. Sackmann Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition, Biophys. J., Volume 69 (1995), pp. 478-488

[64] W.C. Hwang; R.E. Waugh Energy of dissociation of lipid bilayer from the membrane skeleton of red blood cells, Biophys. J., Volume 72 (1997), pp. 2669-2678

[65] L. Scheffer; A. Bitler; E. Ben-Jacob; R. Korenstein Atomic force pulling: Probing the local elasticity of the cell membrane, Eur. Biophys. J., Volume 30 (2001), pp. 83-90

[66] A. Zilker; H. Engelhardt; E. Sackmann Dynamic reflection interference contrast (RIC) microscopy: A new method to study surface excitations of cells and to measure membrane bending elastic moduli, J. Phys. Fr., Volume 48 (1987), pp. 2139-2151

[67] K. Zeman; H. Engelhard; E. Sackmann Bending undulations and elasticity of the erythrocyte membrane: Effects of cell shape and membrane organization, Eur. Biophys. J., Volume 18 (1990), pp. 203-219

[68] M.A. Peterson Linear response of the human erythrocyte to mechanical stress, Phys. Rev. A, Volume 45 (1992), pp. 4116-4131

[69] A. Humpert; M. Baumann Local membrane curvature affects spontaneous membrane fluctuation characteristics, Mol. Membr. Biol., Volume 20 (2003), pp. 155-162

[70] R. Waugh; R. Bauserman Physical measurements of bilayerskeletal separation forces, Ann. Biomed. Eng., Volume 23 (1995), pp. 308-321

[71] P.J.H. Bronkhorst; G.J. Streekstra; J. Grimbergen; E.J. Nijhof; J.J. Sixma; G.J. Brakenhoff A new method to study shape recovery of red blood cells using multiple optical trapping, Biophys. J., Volume 69 (1995), pp. 1666-1673

[72] R. Waugh; E.A. Evans Thermoelasticity of red blood cell membrane, Biophys. J., Volume 26 (1979), pp. 115-131

[73] D.E. Discher; N. Mohandas; E.A. Evans Molecular maps of red cell deformation: Hidden elasticity and in situ connectivity, Science, New Series, Volume 266 (1994), pp. 1032-1035

[74] D.E. Discher; N. Mohandas Kinematics of red cell aspiration by fluorescence-imaged microdeformation, Biophys. J., Volume 71 (1996), pp. 1680-1694

[75] J.C. Lee; D.T. Wong; D.E. Discher Direct measures of large, anisotropic strains in deformation of the erythrocyte cytoskeleton, Biophys. J., Volume 77 (1999), pp. 853-864

[76] F. Brochard; J.F. Lennon Frequency spectrum of the flicker phenomenon in erythrocytes, J. Phys. Fr., Volume 36 (1975), pp. 1035-1047

[77] L.G. Mesquita; U. Agero; O.N. Mesquita Defocusing microscopy: An approach for red blood cell optics, Appl. Phys. Lett., Volume 88 (2006), p. 133901

[78] Y.K. Park; M. Diez-Silva; G. Popescu; G. Lykotrafitis; W. Choi; M.S. Feld; S. Suresh Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum, PNAS, Volume 105 (2008), pp. 13730-13735

[79] E.A. Evans; P.L. La Cell Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation, Blood, Volume 45 (1975), pp. 29-43

[80] M. Puig-de-Morales-Marinkovic; K.T. Turner; J.P. Butler; J.J. Fredberg; S. Suresh Viscoelasticity of the human red blood cell, Am. J. Physiol. Cell. Physiol., Volume 293 (2007), p. C597-C605

[81] Y.-Z. Yoon; J. Kotar; G. Yoon; P. Cicuta The nonlinear mechanical response of the red blood cell, Phys. Biol., Volume 5 (2008), p. 036007

[82] S. Forconi; M. Guerrini Do hemorheological laboratory assays have any clinical relevance?, Clin. Hemorheol., Volume 16 (1996), pp. 17-22

[83] D. Koutsouris; R. Guillet; J.C. Lelievre; M. Boynard; M.T. Guillemin; P. Bertholom; R.B. Wenby; Y. Beuzard; H.J. Meiselman Individual red blood cell transit times during flow through cylindrical micropores, Clin. Hemorheol., Volume 8 (1988), pp. 453-459

[84] O.K. Baskurt Deformability of red blood cells from different species studied by resistive pulse shape analysis technique, Biorheology, Volume 33 (1996), pp. 169-179

[85] M.R. Clark; N. Mohandas; S.B. Shohet Osmotic gradient ektacytometry: Comprehensive characterization of red cell volume and surface maintenance, Blood, Volume 61 (1983), pp. 899-910

[86] H. Schmid-Schönbein; P. Gaehtgens; T. Fischer; M. Stöhr-Liesen Biology of red cells: Non-nucleated erythrocytes as fluid drop-like cell fragments, Int. J. Microcirc. Clin. Exp., Volume 3 (1984), pp. 161-196

[87] J.G.G. Dobbe; G.J. Streekstra; M.R. Hardeman; C. Ince; C.A. Grimbergen Measurement of the distribution of red blood cell deformability using an automated rheoscope, Cytometry, Volume 50 (2002), pp. 313-325

[88] M. Mason Guest; T.P. Bond; R.G. Cooper; J.R. Derrick Red blood cells: Change in shape in capillaries, Science, Volume 142 (1963), pp. 1319-1321

[89] J. Seki; H.H. Lipowsky In vivo and in vitro measurements of red cell velocity under epifluorescence microscopy, Microvasc. Res., Volume 38 (1989), pp. 110-124

[90] J.H. Jeong; Y. Sugii; M. Minamiyama; K. Okamoto Measurement of RBC deformation and velocity in capillaries in vivo, Microvasc. Res., Volume 71 (2006), pp. 212-217

[91] G.J. Tangelder; D.W. Slaaf; A.M.M. Muijtjens; T. Arts; M.G.A. oude Egbrink; R.S. Reneman Velocity profiles of blood platelets and red blood cells flowing in arterioles of the rabbit mesentery, Circ. Res., Volume 59 (1986), pp. 505-514

[92] U. Bagge; P.I. Branemark; R. Karlsson; R. Skalak Three-dimensional observations of red blood cell deformation in capillaries, Blood Cells, Volume 6 (1980), pp. 231-239

[93] R. Skalak; P.I. Branemark Deformation of red blood cells in capillaries, Science, Volume 164 (1969), pp. 717-719

[94] P. Gaehtgens; C. Duhrssen; K.H. Albrecht Motion, deformation, and interaction of blood cells and plasma during flow through narrow capillary tubes, Blood Cells, Volume 6 (1980), pp. 799-812

[95] G. Tomaiuolo; M. Simeone; V. Martinelli; B. Rotoli; S. Guido Red blood cell deformability in microconfined shear flow, Soft Matter, Volume 5 (2009), pp. 3736-3740

[96] P. Gaehtgens; H. Schmid-Schönbein Mechanisms of dynamic flow adaptation of mammalian erythrocytes, Naturwissenschaften, Volume 69 (1982), pp. 294-296

[97] R. Hsu; T.W. Secomb Motion of nonaxisymmetric red blood cells in cylindrical capillaries, J. Biomech. Eng., Volume 111 (1989), pp. 147-151

[98] T.W. Secomb; R. Skalak; N. Ozkaya; J.F. Gross Flow of axisymmetric red blood cells in narrow capillaries, J. Fluid Mech., Volume 163 (1986), pp. 405-423

[99] R.M. Hochmuth; R.N. Marple; S.P. Sutera Capillary blood flow. I. Erythrocyte deformation in glass capillaries, Microvasc. Res., Volume 2 (1970), pp. 409-419

[100] S. Reitsma; D.W. Slaaf; H. Vink; M.A. van Zandvoort; M.G. oude Egbrink The endothelial glycocalyx: Composition, functions, and visualization, Pflügers Archiv: Eur. J. Physiol., Volume 454 (2007), pp. 345-359

[101] A.R. Pries; T.W. Secomb; T. Gessner; M.B. Sperandio; J.F. Gross; P. Gaehtgens Resistance to blood flow in microvessels in vivo, Circ. Res., Volume 75 (1994), pp. 904-915

[102] K.H. Albrecht; P. Gaehtgens; A. Pries; M. Heuser The Fahraeus effect in narrow capillaries (i.d. 3.3 to 11.0 μm), Microvasc. Res., Volume 18 (1979), pp. 33-47

[103] A. Bransky; N. Korin; Y. Nemirovski; U. Dinnar Correlation between erythrocytes deformability and size: A study using a microchannel based cell analyzer, Microvasc. Res., Volume 73 (2007), pp. 7-13

[104] A.C.L. Barnard; L. Lopez; J.D. Hellums Basic theory of blood flow in capillaries, Microvasc. Res., Volume 1 (1986), pp. 23-34

[105] M.J. Lighthill Pressure-forcing of tightly fitting pellets along fluid-filled elastic tubes, J. Fluid Mech., Volume 34 (1968), pp. 113-143

[106] R. Bali; S. Mishra; S. Dubey A mathematical model for red cell motion in narrow capillary surrounded by tissue, Appl. Math. Comp., Volume 196 (2008), pp. 193-199

[107] T.W. Secomb Flow-dependent rheological properties of blood in capillaries, Microvasc. Res., Volume 34 (1987), pp. 46-58

[108] E.A. Evans; R. Skalak Mechanics and Thermodynamics of Biomembranes, CRC, Boca Raton, FL, 1980

[109] O.K. Baskurt; M. Boynard; G.C. Cokelet; P. Connes; B.M. Cooke; S. Forconi; F. Liao; M.R. Hardeman; F. Jung; H.J. Meiselman; G. Nash; N. Nemeth; B. Neu; B. Sandhagen; S. Shin; G. Thurston; J.L. Wautier New guidelines for hemorheological laboratory techniques, Clin. Hemorheol. Microcircul., Volume 42 (2009), pp. 75-97

[110] A. Palmer A study of blood flow in minute vessels of the pancreatic region of the rat with reference to intermittent corpuscular flow in individual capillaries, Quart. J. Exp. Physiol., Volume 44 (1959), p. 149

[111] V. Seshadri; R.M. Hochmuth; P.A. Croce; S.P. Sutera Capillary blood flow. III. Deformable model cells compared to erythrocytes in vitro, Microvasc. Res., Volume 2 (1970), pp. 434-442

[112] P.R. Zarda; S. Chien; R. Skalak Elastic deformations of red blood cells, Biorheology, Volume 10 (1978), pp. 211-221

[113] T.W. Secomb; R. Skalak A two-dimensional model for capillary flow of an asymmetric cell, Microvasc. Res., Volume 24 (1982), pp. 194-203

[114] T.W. Secomb; R. Hsu; A.R. Pries A model for RBC motion in glycocalyx-lined capillaries, Am. J. Physiol., Volume 274 (1998), p. H1016-H1022

[115] E.R. Damiano The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries, Microvasc. Res., Volume 55 (1998), pp. 77-91

[116] T.W. Secomb; R. Hsu Analysis of red blood cell motion through cylindrical micropores: Effects of cell properties, Biophys. J., Volume 71 (1996), pp. 1095-1101

[117] C. Pozrikidis Numerical simulation of the flow-induced deformation of red blood cells, Ann. Biomed. Eng., Volume 31 (2003), p. 1194

[118] C. Pozrikidis Axisymmetric motion of a file of red blood cells through capillaries, Phys. Fluids, Volume 17 (2005), p. 031503

[119] C. Pozrikidis Numerical simulation of cell motion in tube flow, Ann. Biomed. Eng., Volume 33 (2005), pp. 165-178

[120] S.K. Boey; D.H. Boal; D.E. Discher Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models, Biophys. J., Volume 75 (1998), pp. 1573-1583

[121] D.E. Discher; D.H. Boal; S.K. Boey Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration, Biophys. J., Volume 75 (1998), pp. 1584-1597

[122] J. Li; G. Lykotrafitis; M. Dao; S. Suresh Cytoskeletal dynamics of human erythrocyte, PNAS, Volume 104 (2007), pp. 4937-4942

[123] H. Noguchi; G. Gompper Shape transitions of fluid vesicles and red blood cells in capillary flows, PNAS, Volume 102 (2005), pp. 14159-14164

[124] J.L. McWhirter; H. Noguchi; G. Gompper Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries, PNAS, Volume 106 (2009), pp. 6039-6043

[125] I.V. Pivkin; G.E. Karniadakis Accurate coarse-grained modeling of red blood cells, Phys. Rev. Lett., Volume 101 (2008), p. 118105

[126] Y. Kikuchi; K. Sato; H. Ohki; T. Kaneko Optically accessible microchannels formed in a single-crystal silicon substrate for studies of blood rheology, Microvasc. Res., Volume 44 (1992), pp. 226-240

[127] Y. Kikuchi; Q. Da; T. Fujino Variation in red blood cell deformability and possible consequences for oxygen transport to tissue, Microvasc. Res., Volume 47 (1994), pp. 222-231

[128] P. Wilding; J. Pfahler; H.H. Bau; J.N. Zemel; L.J. Kricka Manipulation and flow of biological fluids in straight channels micromachined in silicon, Clin. Chem., Volume 40 (1994), pp. 43-47

[129] G.R. Cokelet; R. Soave; G. Pugh; L. Rathbun Fabrication of in vitro microvascular blood flow systems by photolithography, Microvasc. Res., Volume 46 (1993), pp. 394-400

[130] M.C. Tracey; R.S. Greenaway; A. Das; P.H. Kaye; A.J. Barnes A silicon micromachined device for use in blood cell deformability studies, IEEE Trans. Biomed. Eng., Volume 42 (1995), pp. 751-761

[131] N. Sutton; M.C. Tracey; I.D. Johnston; R.S. Greenaway; M.W. Rampling A novel instrument for studying the flow behaviour of erythrocytes through microchannels simulating human blood capillaries, Microvasc. Res., Volume 53 (1997), pp. 272-281

[132] J.P. Brody; Y. Han; R.H. Austin; M. Bitensky Deformation and flow of red blood cells in a synthetic lattice: Evidence for an active cytoskeleton, Biophys. J., Volume 68 (1995), pp. 2224-2232

[133] K. Tsukada; E. Sekizuka; C. Oshio; H. Minamitani Direct measurement of erythrocyte deformability in diabetes mellitus with a transparent microchannel capillary model and high-speed video camera system, Microvasc. Res., Volume 61 (2001), pp. 231-239

[134] J.P. Shelby; J. White; K. Ganesan; P.K. Rathod; D.T. Chiu A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum infected erythrocytes, PNAS, Volume 100 (2003), pp. 14618-14622

[135] M. Abkarian; M. Faivre; H.A. Stone High-speed microfluidic differential manometer for cellular-scale hydrodynamics, PNAS, Volume 103 (2006), pp. 538-542

[136] R. Zhao; J.F. Antaki; T. Naik; T.N. Bachman; M.V. Kameneva; Z.J. Wu Microscopic investigation of erythrocyte deformation dynamics, Biorheology, Volume 43 (2006), pp. 747-765

[137] G. Danker; P.M. Vlahovska; C. Misbah Vesicles in Poiseuille flow, Phys. Rev. Lett., Volume 102 (2009), p. 148102

[138] M. Faivre; M. Abkarian; K. Bickraj; H.A. Stone Geometrical focusing of cells in a microfluidic device: An approach to separate blood plasma, Biorheology, Volume 43 (2006), pp. 147-159

[139] S.S. Shevkoplyas; S.C. Gifford; T. Yoshida; M.W. Bitensky Prototype of an in vitro model of the microcirculation, Microvasc. Res., Volume 65 (2003), pp. 132-136

[140] S.S. Shevkoplyas; T. Yoshida; S.C. Gifford; M.W. Bitensky Direct measurement of the impact of impaired erythrocyte deformability on microvascular network perfusion in a microfluidic device, Lab Chip, Volume 6 (2006), pp. 914-920

[141] S. Suresh Mechanical response of human red blood cells in health and disease: Some structure–property–function relationships, J. Mater. Res., Volume 21 (2006), pp. 1871-1877

[142] A.C. De Luca; G. Rusciano; R. Ciancia; V. Martinelli; G. Pesce; B. Rotoli; A. Sasso Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by Raman Tweezers, Opt. Express, Volume 16 (2008), pp. 7943-7957

[143] G. Barshtein; R. Ben-Ami; S. Yedgar Role of red blood cell flow behavior in hemodynamics and hemostasis, Expert Rev. Cardiovasc. Ther., Volume 5 (2007), pp. 744-752

[144] C. Quégunier; D. Barthés-Biesel Axisymmetric motion of capsules through cylindrical channels, J. Fluid Mech., Volume 348 (1997), pp. 349-376

[145] S.P. Sutera; V. Seshadri; P.A. Croce; R.M. Hochmuth Capillary blood flow. II. Deformable model cells in tube flow, Microvasc. Res., Volume 2 (1970), pp. 420-433

[146] V. Vitkova; M. Mader; T. Podgorski Deformation of vesicles flowing through capillaries, Europhys. Lett., Volume 68 (2004), pp. 398-404

[147] F. Risso; F. Collé-Paillot; M. Zagzoule Experimental investigation of a bioartificial capsule flowing in a narrow tube, J. Fluid Mech., Volume 547 (2006), pp. 149-173

[148] J.S. Lee; Y.C. Fung Modeling experiments of a single red blood cell moving in a capillary blood vessel, Microvasc. Res., Volume 1 (1969), pp. 221-243

[149] A. Diaz; N. Pelekasis; D. Barthès-Biesel Transient response of a capsule subjected to varying flow conditions: Effect of internal fluid viscosity and membrane elasticity, Phys. Fluid, Volume 12 (2000), pp. 948-957

[150] H. Noguchi; G. Gompper Vesicle dynamics in shear and capillary flows, J. Phys.: Condens. Matter, Volume 17 (2005), p. S3439-S3444

[151] V. Sibillo; G. Pasquariello; M. Simeone; V. Cristini; S. Guido Drop deformation in microconfined shear flow, Phys. Rev. Lett., Volume 97 (2006), p. 054502

Cité par Sources :

Commentaires - Politique