Comptes Rendus
Trends and perspectives in solid-state wetting / Mouillage solide–solide : tendances et perspectives
A model for solid-state dewetting of a fully-faceted thin film
[Un modèle pour le démouillage solide–solide dʼun film mince complètement facetté]
Comptes Rendus. Physique, Trends and perspectives in solid-state wetting / Mouillage solide-solide : tendances et perspectives, Volume 14 (2013) no. 7, pp. 564-577.

Du fait de leurs rapports dʼaspect extrêmement élevés, la plupart des films fins sont instables et, lorsquʼils sont chauffés, ils démouillent ou sʼagglomèrent pour former des îlots. Ce processus peut se produire à lʼétat solide grâce à la diffusion de surface induite par la capillarité. Un trait caractéristique du processus de démouillage est la rétractation des bords du film, quʼils soient naturels ou structurés, ou autour des trous qui se forment dans le film. Des modèles de rétractation de bords ont été précédemment développés pour des matériaux isotropes et anisotropes avec des surfaces différentiables, mais les effets du facettage dans les matériaux hautement anisotropes sont largement inexplorés. Nous présentons ici un modèle à deux dimensions de la rétractation des bords pour des films minces hautement anisotropes, complètement facettés. Ce modèle montre généralement un bon accord avec les résultats expérimentaux pour la rétractation de films de nickel monocristallins sur MgO. À la fois dans les expériences et le modèle, des fronts se forment lorsque les bords se rétractent. Les effets de lʼajustement de divers paramètres physiques sur le taux de rétractation des bords et la géométrie des bourrelets en évolution ont été explorés en utilisant le modèle. Lʼépaisseur du film, lʼautodiffusivité de surface sur la facette supérieure du front, lʼangle de contact équivalent du film sur le substrat, ainsi que la valeur absolue des énergies de surface se sont révélés être les facteurs qui influencent le plus le taux de rétractation des bords. Dans les modèles isotropes et certains systèmes expérimentaux, des vallées se forment à lʼavant des fronts de rétractation et sʼapprofondissent pour entrer en contact avec le substrat et mener à la rupture du film. Notre modèle suggère que cette forme de rupture ne se produira pas lorsque le front est complètement facetté et que sa surface supérieure est une facette dʼéquilibre. Pourtant, cette rupture du film peut survenir via lʼamincissement de films ainsi que pour des films dont les surfaces supérieures ne forment pas de facettes dʼéquilibre.

Owing to their extremely aspect ratios, most thin films are unstable and when they are heated, they will dewet or agglomerate to form islands. This process can occur in the solid state through capillary-driven surface self-diffusion. A key feature of the dewetting process is the retraction of the edges of the film, either natural edges, patterned edges, or edges where holes have formed. Models of edge retraction have been previously developed for isotropic materials and anisotropic materials with differentiable surfaces, but the effects of faceting in highly anisotropic materials have been largely unexplored. Here, we present a two-dimensional model of edge retraction for highly anisotropic, fully-faceted thin films. This model shows generally good agreement with experimental results for edge retraction of single-crystal Ni films on MgO. In both experiments and the model, rims form as the edges retract. The effects of adjusting various physical parameters on the edge retraction rate and the evolving rim geometry were explored using the model. The film thickness, surface self-diffusivity on the top facet of the rim, the equivalent contact angle of the film on the substrate, and the absolute value of the surface energies were found to be the factors that have the greatest influence on the edge retraction rate. In isotropic models and some experimental systems, valleys form ahead of the retracting rims and deepen to contact the substrate and cause pinch-off. Our model suggests that this form of pinch-off will not occur when the rim is fully faceted and the top surface is an equilibrium facet. However, pinch-off can occur through film thinning and for films with top surfaces that do not form flat equilibrium facets.

Publié le :
DOI : 10.1016/j.crhy.2013.06.005
Keywords: Thin films, Dewetting, Capillarity, Crystalline, Anisotropic, Solid-state
Mots-clés : Films minces, Démouillage, Capillarité, Milieux crystallins, Anisotropie, État solide

Rachel V. Zucker 1 ; Gye Hyun Kim 1 ; W. Craig Carter 1 ; Carl V. Thompson 1

1 Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
@article{CRPHYS_2013__14_7_564_0,
     author = {Rachel V. Zucker and Gye Hyun Kim and W. Craig Carter and Carl V. Thompson},
     title = {A model for solid-state dewetting of a fully-faceted thin film},
     journal = {Comptes Rendus. Physique},
     pages = {564--577},
     publisher = {Elsevier},
     volume = {14},
     number = {7},
     year = {2013},
     doi = {10.1016/j.crhy.2013.06.005},
     language = {en},
}
TY  - JOUR
AU  - Rachel V. Zucker
AU  - Gye Hyun Kim
AU  - W. Craig Carter
AU  - Carl V. Thompson
TI  - A model for solid-state dewetting of a fully-faceted thin film
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 564
EP  - 577
VL  - 14
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.06.005
LA  - en
ID  - CRPHYS_2013__14_7_564_0
ER  - 
%0 Journal Article
%A Rachel V. Zucker
%A Gye Hyun Kim
%A W. Craig Carter
%A Carl V. Thompson
%T A model for solid-state dewetting of a fully-faceted thin film
%J Comptes Rendus. Physique
%D 2013
%P 564-577
%V 14
%N 7
%I Elsevier
%R 10.1016/j.crhy.2013.06.005
%G en
%F CRPHYS_2013__14_7_564_0
Rachel V. Zucker; Gye Hyun Kim; W. Craig Carter; Carl V. Thompson. A model for solid-state dewetting of a fully-faceted thin film. Comptes Rendus. Physique, Trends and perspectives in solid-state wetting / Mouillage solide-solide : tendances et perspectives, Volume 14 (2013) no. 7, pp. 564-577. doi : 10.1016/j.crhy.2013.06.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.06.005/

[1] R. Brandon; F.J. Bradshaw The mobility of the surface atoms of copper and silver evaporated deposits, March 1966 (Royal Aircraft Establishment Technical Report 66095)

[2] E. Jiran; C.V. Thompson Capillary instabilities in thin films, J. Electron. Mater., Volume 19 (1990), p. 1153

[3] E. Jiran; C.V. Thompson Capillary instabilities in thin, continuous films, Thin Solid Films, Volume 208 (1992), p. 23

[4] D. Danielson; D. Sparacin; M. Jurgen; L. Kimerling Surface-energy-driven dewetting theory of silicon-on-insulator agglomeration, J. Appl. Phys., Volume 100 (2006), p. 083507

[5] J. Ye; C.V. Thompson Mechanisms of complex morphological evolution during solid-state dewetting of single-crystal nickel thin films, Appl. Phys. Lett., Volume 97 (2010), p. 071904

[6] C. Jahan; O. Faynot; L. Tosti; J.M. Hartmann Agglomeration control during the selective epitaxial growth of Si raised sources and drains on ultra-thin silicon-on-insulator substrates, J. Cryst. Growth, Volume 280 (2005), p. 530

[7] S. Rath; M. Heilig; H. Port; J. Wrachtrup Periodic organic nanodot patterns for optical memory, Nano Lett., Volume 7 (2007), p. 3845

[8] M. Chhowalla; K.B.K. Teo; C. Ducati; N.L. Rupesinghe; G.A.J. Amaratunga; A.C. Ferrari; D. Roy; J. Robertson; W.I. Mine Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition, J. Appl. Phys., Volume 90 (2001), p. 5308

[9] V. Schmidt; J.V. Wittemann; S. Senz; U. Gosele Silicon nanowires: A review on aspects of their growth and their electrical properties, Adv. Mater., Volume 21 (2009), p. 2681

[10] A. Colli; A. Fasoli; P. Beecher; P. Servati; S. Pisana; Y. Fu; A. Flewitt; W. Mine; J. Robertson; C. Ducati; S. De Franceschi; S. Hofmann; A. Ferrari Thermal and chemical vapor deposition of Si nanowires: Shape control, dispersion and electrical properties, J. Appl. Phys., Volume 102 (2007), p. 034302

[11] J. Mizsei Activating technology of SnO2 layers by metal particles from ultra thin metal films, Sens. Actuators B, Chem. (1993), p. 328

[12] R. Nuryadi; Y. Ishikawa; M. Tabe Formation and ordering of self-assembled Si islands by ultrahigh vacuum annealing of ultrathin bonded silicon-on-insulator structure, Appl. Surf. Sci., Volume 159 (2000), p. 121

[13] P. Sutter; W. Ernst; Y.S. Choi; E. Sutter Mechanisms of thermally induced dewetting of ultrathin silicon-on-insulator, Appl. Phys. Lett., Volume 88 (2006), p. 141924

[14] Y. Fan; R. Nuryadi; Z. Burhanudin; M. Tabe Thermal agglomeration of ultrathin silicon-on-insulator layers: Crystalline orientation dependence, Jpn. J. Appl. Phys., Volume 47 (2008), p. 1461

[15] J. Ye; C.V. Thompson Templated solid-state dewetting to controllably produce complex patterns, Adv. Mater., Volume 23 (2011), p. 1567

[16] W.C. Carter; A.R. Roosen; J.W. Cahn; J.E. Taylor Shape evolution by surface attachment limited kinetics on completely faceted surfaces, Acta Metall. Mater., Volume 43 (1995), p. 4309

[17] D.J. Srolovitz; S.A. Safran Capillary instabilities in thin films. I. Energetics, J. Appl. Phys., Volume 60 (1986), p. 247

[18] W.W. Mullins Theory of thermal grooving, J. Appl. Phys., Volume 28 (1957), p. 333

[19] D.J. Srolovitz; S.A. Safran Capillary instabilities in thin films. II. Kinetics, J. Appl. Phys., Volume 60 (1986), p. 255

[20] H. Wong; P.W. Voorhees; M.J. Miksis; S.H. Davis Periodic mass shedding of a retracting solid film step, Acta Mater., Volume 48 (2000), p. 1719

[21] E. Dornel; J.-C. Barbé; F. de Crécy; G. Lacolle; J. Eymery Surface diffusion dewetting of thin solid films: Numerical method and application to Si/SiO2, Phys. Rev. B, Volume 73 (2006), p. 115427

[22] J. Ye; C.V. Thompson Regular pattern formation through the retraction and pinch-off of edges during solid-state dewetting of patterned single crystal films, Phys. Rev. B, Volume 82 (2010), p. 193408

[23] J. Ye; C.V. Thompson Anisotropic edge retraction and hole growth during solid-state dewetting of single crystal nickel thin films, Acta Mater., Volume 59 (2011), p. 582

[24] E. Bussmann; F. Cheynis; F. Leroy; P. Muller; O. Pierre-Louis Dynamics of solid thin-film dewetting in the silicon-on-insulator system, New J. Phys., Volume 13 (2011), p. 043017

[25] L. Klinger; D. Amram; E. Rabkin Kinetics of a retracting solid film edge: The case of high surface anisotropy, Scr. Mater., Volume 64 (2011), p. 962

[26] G.H. Kim; R.V. Zucker; J. Ye; W.C. Carter; C.V. Thompson Quantitative analysis of anisotropic edge retraction by solid-state dewetting of thin single crystal films, J. Appl. Phys. (2013) (in press)

[27] F. Leroy; F. Cheynis; T. Passanante; P. Mueller Dynamics, anisotropy, and stability of silicon-on-insulator dewetting fronts, Phys. Rev. B, Volume 85 (2012), p. 195414

[28] W. Kan; H. Wong Fingering instability of retracting solid film edge, J. Appl. Phys., Volume 97 (2005), p. 043515

[29] The Physics of Powder Metallurgy (C. Herring; W.E. Kingston, eds.), McGraw–Hill, New York, 1951, p. 143

[30] W. Zhang; I. Gladwell Evolution of two-dimensional crystal morphologies by surface diffusion with anisotropic surface free energies, Comput. Mater. Sci., Volume 27 (2003), p. 461

[31] J.E. Taylor Mean curvature and weighted mean curvature, Acta Metall. Mater., Volume 40 (1992), p. 1475

[32] G. Wulff Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Kristallflächen, Z. Kristallogr., Volume 34 (1901), p. 449

[33] W.L. Winterbottom Equilibrium shape of a small particle in contact with a foreign substrate, Acta Metall., Volume 15 (1967), p. 303

[34] P.S. Maiya; J.M. Blakely Surface self-diffusion and surface energy of nickel, J. Appl. Phys., Volume 38 (1967), p. 698

[35] P.M. Agrawal; B.M. Rice; D.L. Thompson Predicting trends in rate parameters for self-diffusion of FCC metal surfaces, Surf. Sci., Volume 515 (2002), p. 21

[36] L. Vitos; A.V. Ruban; H.L. Skriver; J. Kollar The surface energy of metals, Surf. Sci., Volume 411 (1998), p. 186

[37] S. Seo; C. Euaruksakui; D.E. Savage; M.G. Lagally; P.G. Evans Nanostructure formation in the initial roughening of a thin silicon sheet, Phys. Rev. B, Volume 81 (2010) 041302(R)

[38] F. Buatier de Mongeot; W. Zhu; A. Molle; R. Buzio; C. Boragno; U. Valbusa; E.G. Wang; Z. Zhang Nanocrystal formation and faceting instability in A1(110) homoepitaxy: True upward adatom diffusion at step edges and island corner, Phys. Rev. Lett., Volume 91 (2003), p. 016102

  • Maxwell A. L'Etoile; Carl V. Thompson; W. Craig Carter A level-set method for simulating solid-state dewetting in systems with strong crystalline anisotropy, Acta Materialia, Volume 282 (2025), p. 120368 | DOI:10.1016/j.actamat.2024.120368
  • Weizhu Bao; Yifei Li; Quan Zhao A structure-preserving parametric finite element method for solid-state dewetting on curved substrates, Communications in Nonlinear Science and Numerical Simulation, Volume 146 (2025), p. 108767 | DOI:10.1016/j.cnsns.2025.108767
  • Meng Li; Chunjie Zhou Structure-preserving parametric finite element methods for simulating axisymmetric solid-state dewetting problems with anisotropic surface energies, Journal of Computational Physics, Volume 531 (2025), p. 113944 | DOI:10.1016/j.jcp.2025.113944
  • Meng Li; Chunjie Zhou Energy-Stable Parametric Finite Element Approximations for Regularized Solid-State Dewetting Problems in Strongly Anisotropic Materials, Journal of Nonlinear Science, Volume 35 (2025) no. 3 | DOI:10.1007/s00332-025-10143-w
  • Jonathan Zimmerman; Eugen Rabkin Recrystallization of deformed metal nanoparticles, Acta Materialia, Volume 281 (2024), p. 120367 | DOI:10.1016/j.actamat.2024.120367
  • Weijie Huang; Wei Jiang; Yan Wang A θ-L Approach for the Simulation of Solid-State Dewetting Problems with Strongly Anisotropic Surface Energies, Journal of Scientific Computing, Volume 100 (2024) no. 2 | DOI:10.1007/s10915-024-02589-z
  • Gurupada Ghorai; Kalyan Ghosh; Mrinal Kanti Sikdar; Pratap Kumar Sahoo Cathodoluminescence Properties of Ni-Decorated Hexagonal Cr Microrods for Magneto-Plasmonic Applications, ACS Applied Optical Materials, Volume 1 (2023) no. 4, p. 878 | DOI:10.1021/acsaom.3c00027
  • Meng Li; Yifei Li; Lifang Pei A symmetrized parametric finite element method for simulating solid-state dewetting problems, Applied Mathematical Modelling, Volume 121 (2023), p. 731 | DOI:10.1016/j.apm.2023.05.030
  • Francesco Boccardo; Fabrizio Rovaris; Ashwani Tripathi; Francesco Montalenti; Olivier Pierre-Louis Stress-Induced Acceleration and Ordering in Solid-State Dewetting, Physical Review Letters, Volume 128 (2022) no. 2 | DOI:10.1103/physrevlett.128.026101
  • Yoon Ah Shin; Carl V. Thompson Templated fingering during solid state dewetting, Acta Materialia, Volume 207 (2021), p. 116669 | DOI:10.1016/j.actamat.2021.116669
  • Quan Zhao; Wei Jiang; Weizhu Bao An energy-stable parametric finite element method for simulating solid-state dewetting, IMA Journal of Numerical Analysis, Volume 41 (2021) no. 3, p. 2026 | DOI:10.1093/imanum/draa070
  • Kangwoo Ahn; Su Yong Lee; In Hwa Cho; Yoonhee Kim; Hyon Chol Kang; Do Young Noh Phase separated bi-metallic PtNi nanoparticles formed by pulsed laser dewetting, Nanotechnology, Volume 32 (2021) no. 8, p. 085708 | DOI:10.1088/1361-6528/abc9e9
  • Mantas Sriubas; Vytautas Kavaliūnas; Kristina Bočkutė; Paulius Palevičius; Marius Kaminskas; Žilvinas Rinkevičius; Minvydas Ragulskis; Giedrius Laukaitis Formation of Au nanostructures on the surfaces of annealed TiO2 thin films, Surfaces and Interfaces, Volume 25 (2021), p. 101239 | DOI:10.1016/j.surfin.2021.101239
  • Constantin Wansorra; Enrico Bruder; Wolfgang Donner Atomistic view onto solid state dewetting: Thin bismuth films with and without strain gradient, Acta Materialia, Volume 200 (2020), p. 455 | DOI:10.1016/j.actamat.2020.09.030
  • Younès Addab; Maya K. Kini; Blandine Courtois; Alan Savan; Alfred Ludwig; Nathalie Bozzolo; Christina Scheu; Gerhard Dehm; Dominique Chatain Microstructure evolution and thermal stability of equiatomic CoCrFeNi films on (0001) α-Al2O3, Acta Materialia, Volume 200 (2020), p. 908 | DOI:10.1016/j.actamat.2020.09.064
  • Raul Florez; Miguel L. Crespillo; Xiaoqing He; Tommi A. White; Gregory Hilmas; William G. Fahrenholtz; Joseph Graham Early stage oxidation of ZrC under 10 MeV Au3+ ion-irradiation at 800 °C, Corrosion Science, Volume 169 (2020), p. 108609 | DOI:10.1016/j.corsci.2020.108609
  • Wei Jiang; Quan Zhao; Weizhu Bao Sharp-Interface Model for Simulating Solid-State Dewetting in Three Dimensions, SIAM Journal on Applied Mathematics, Volume 80 (2020) no. 4, p. 1654 | DOI:10.1137/19m1251345
  • Stefan Werner Hieke; Marc-Georg Willinger; Zhu-Jun Wang; Gunther Richter; Dominique Chatain; Gerhard Dehm; Christina Scheu On pinning-depinning and microkink-flow in solid state dewetting: Insights by in-situ ESEM on Al thin films, Acta Materialia, Volume 165 (2019), p. 153 | DOI:10.1016/j.actamat.2018.11.028
  • T. Luo; C. Girardeaux; H. Bracht; D. Mangelinck Role of the slow diffusion species in the dewetting of compounds: The case of NiSi on a Si isotope multilayer studied by atom probe tomography, Acta Materialia, Volume 165 (2019), p. 192 | DOI:10.1016/j.actamat.2018.11.042
  • Quan Zhao A sharp-interface model and its numerical approximation for solid-state dewetting with axisymmetric geometry, Journal of Computational and Applied Mathematics, Volume 361 (2019), p. 144 | DOI:10.1016/j.cam.2019.04.008
  • Wei Jiang; Quan Zhao Sharp-interface approach for simulating solid-state dewetting in two dimensions: A Cahn–Hoffman ξ-vector formulation, Physica D: Nonlinear Phenomena, Volume 390 (2019), p. 69 | DOI:10.1016/j.physd.2018.11.003
  • Jonghyuk Kim; Hyunwoo Hwangbo Real-Time Early Warning System for Sustainable and Intelligent Plastic Film Manufacturing, Sustainability, Volume 11 (2019) no. 5, p. 1490 | DOI:10.3390/su11051490
  • P. Jacquet; R. Podor; J. Ravaux; J. Lautru; J. Teisseire; I. Gozhyk; J. Jupille; R. Lazzari On the solid-state dewetting of polycrystalline thin films: Capillary versus grain growth approach, Acta Materialia, Volume 143 (2018), p. 281 | DOI:10.1016/j.actamat.2017.08.070
  • R.T. Bratfalean; D. Marconi Influence of Ar+ jet treatment and low substrate temperature on the solid-state dewetting of gold films, Applied Surface Science, Volume 447 (2018), p. 78 | DOI:10.1016/j.apsusc.2018.03.136
  • Marco Abbarchi; Meher Naffouti; Mario Lodari; Marco Salvalaglio; Rainer Backofen; Thomas Bottein; Axel Voigt; Thomas David; Jean-Benoît Claude; Mohammed Bouabdellaoui; Abdelmalek Benkouider; Ibtissem Fraj; Luc Favre; Antoine Ronda; Isabelle Berbezier; David Grosso; Monica Bollani Solid-state dewetting of single-crystal silicon on insulator: effect of annealing temperature and patch size, Microelectronic Engineering, Volume 190 (2018), p. 1 | DOI:10.1016/j.mee.2018.01.002
  • Wei Jiang; Yan Wang; David J. Srolovitz; Weizhu Bao Solid-state dewetting on curved substrates, Physical Review Materials, Volume 2 (2018) no. 11 | DOI:10.1103/physrevmaterials.2.113401
  • Mohammed Bouabdellaoui; Simona Checcucci; Thomas Wood; Meher Naffouti; Robert Paria Sena; Kailang Liu; Carmen M. Ruiz; David Duche; Judikael le Rouzo; Ludovic Escoubas; Gerard Berginc; Nicolas Bonod; Mimoun Zazoui; Luc Favre; Leo Metayer; Antoine Ronda; Isabelle Berbezier; David Grosso; Massimo Gurioli; Marco Abbarchi Self-assembled antireflection coatings for light trapping based on SiGe random metasurfaces, Physical Review Materials, Volume 2 (2018) no. 3 | DOI:10.1103/physrevmaterials.2.035203
  • Thomas Wood; Meher Naffouti; Johann Berthelot; Thomas David; Jean-Benoît Claude; Léo Métayer; Anne Delobbe; Luc Favre; Antoine Ronda; Isabelle Berbezier; Nicolas Bonod; Marco Abbarchi All-Dielectric Color Filters Using SiGe-Based Mie Resonator Arrays, ACS Photonics, Volume 4 (2017) no. 4, p. 873 | DOI:10.1021/acsphotonics.6b00944
  • S.W. Hieke; B. Breitbach; G. Dehm; C. Scheu Microstructural evolution and solid state dewetting of epitaxial Al thin films on sapphire (α-Al2O3), Acta Materialia, Volume 133 (2017), p. 356 | DOI:10.1016/j.actamat.2017.05.026
  • S.W. Hieke; G. Dehm; C. Scheu Annealing induced void formation in epitaxial Al thin films on sapphire (α-Al2O3), Acta Materialia, Volume 140 (2017), p. 355 | DOI:10.1016/j.actamat.2017.08.050
  • Weizhu Bao; Wei Jiang; Yan Wang; Quan Zhao A parametric finite element method for solid-state dewetting problems with anisotropic surface energies, Journal of Computational Physics, Volume 330 (2017), p. 380 | DOI:10.1016/j.jcp.2016.11.015
  • Marion Dziwnik; Andreas Münch; Barbara Wagner An anisotropic phase-field model for solid-state dewetting and its sharp-interface limit, Nonlinearity, Volume 30 (2017) no. 4, p. 1465 | DOI:10.1088/1361-6544/aa5e5d
  • Meher Naffouti; Rainer Backofen; Marco Salvalaglio; Thomas Bottein; Mario Lodari; Axel Voigt; Thomas David; Abdelmalek Benkouider; Ibtissem Fraj; Luc Favre; Antoine Ronda; Isabelle Berbezier; David Grosso; Marco Abbarchi; Monica Bollani Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures, Science Advances, Volume 3 (2017) no. 11 | DOI:10.1126/sciadv.aao1472
  • Xi Cen; Xinming Zhang; Andrew M. Thron; Klaus van Benthem Agglomeration and long-range edge retraction for Au/Ni bilayer films during thermal annealing, Acta Materialia, Volume 119 (2016), p. 167 | DOI:10.1016/j.actamat.2016.08.021
  • Rachel V. Zucker; Gye Hyun Kim; Jongpil Ye; W. Craig Carter; Carl V. Thompson The mechanism of corner instabilities in single-crystal thin films during dewetting, Journal of Applied Physics, Volume 119 (2016) no. 12 | DOI:10.1063/1.4944712
  • Gye Hyun Kim; Wen Ma; Bilge Yildiz; Carl V. Thompson Effect of annealing ambient on anisotropic retraction of film edges during solid-state dewetting of thin single crystal films, Journal of Applied Physics, Volume 120 (2016) no. 7 | DOI:10.1063/1.4961205
  • Meher Naffouti; Thomas David; Abdelmalek Benkouider; Luc Favre; Antoine Ronda; Isabelle Berbezier; Sebastien Bidault; Nicolas Bonod; Marco Abbarchi Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2dewetting, Nanoscale, Volume 8 (2016) no. 5, p. 2844 | DOI:10.1039/c5nr07597a
  • Meher Naffouti; Thomas David; Abdelmalek Benkouider; Luc Favre; Martiane Cabie; Antoine Ronda; Isabelle Berbezier; Marco Abbarchi Fabrication of core–shell nanostructures via silicon on insulator dewetting and germanium condensation: towards a strain tuning method for SiGe-based heterostructures in a three-dimensional geometry, Nanotechnology, Volume 27 (2016) no. 30, p. 305602 | DOI:10.1088/0957-4484/27/30/305602
  • Wei Jiang; Yan Wang; Quan Zhao; David J. Srolovitz; Weizhu Bao Solid-state dewetting and island morphologies in strongly anisotropic materials, Scripta Materialia, Volume 115 (2016), p. 123 | DOI:10.1016/j.scriptamat.2016.01.018
  • P. Jacquet; R. Podor; J. Ravaux; J. Teisseire; I. Gozhyk; J. Jupille; R. Lazzari Grain growth: The key to understand solid-state dewetting of silver thin films, Scripta Materialia, Volume 115 (2016), p. 128 | DOI:10.1016/j.scriptamat.2016.01.005
  • Rachel V. Zucker; W. Craig Carter; Carl V. Thompson Power-law scaling regimes for solid-state dewetting of thin films, Scripta Materialia, Volume 116 (2016), p. 143 | DOI:10.1016/j.scriptamat.2016.01.039
  • Meher Naffouti; Thomas David; Abdelmalek Benkouider; Luc Favre; Anne Delobbe; Antoine Ronda; Isabelle Berbezier; Marco Abbarchi Templated Solid‐State Dewetting of Thin Silicon Films, Small, Volume 12 (2016) no. 44, p. 6115 | DOI:10.1002/smll.201601744
  • F. Leroy; Ł. Borowik; F. Cheynis; Y. Almadori; S. Curiotto; M. Trautmann; J.C. Barbé; P. Müller How to control solid state dewetting: A short review, Surface Science Reports, Volume 71 (2016) no. 2, p. 391 | DOI:10.1016/j.surfrep.2016.03.002
  • S. A. Jang; H. J. Lee; C. V. Thompson; C. A. Ross; Y. J. Oh Crystallographic analysis of the solid-state dewetting of polycrystalline gold film using automated indexing in a transmission electron microscope, APL Materials, Volume 3 (2015) no. 12 | DOI:10.1063/1.4937432
  • Yan Wang; Wei Jiang; Weizhu Bao; David J. Srolovitz Sharp interface model for solid-state dewetting problems with weakly anisotropic surface energies, Physical Review B, Volume 91 (2015) no. 4 | DOI:10.1103/physrevb.91.045303
  • Jongpil Ye Fabrication of ordered arrays of micro- and nanoscale features with control over their shape and size via templated solid-state dewetting, Scientific Reports, Volume 5 (2015) no. 1 | DOI:10.1038/srep09823
  • Galit Atiya; Dominique Chatain; Vissarion Mikhelashvili; Gadi Eisenstein; Wayne D. Kaplan The role of abnormal grain growth on solid-state dewetting kinetics, Acta Materialia, Volume 81 (2014), p. 304 | DOI:10.1016/j.actamat.2014.08.038

Cité par 47 documents. Sources : Crossref

Commentaires - Politique