Comptes Rendus
Trends and perspectives in solid-state wetting / Mouillage solide–solide : tendances et perspectives
A model for solid-state dewetting of a fully-faceted thin film
[Un modèle pour le démouillage solide–solide dʼun film mince complètement facetté]
Comptes Rendus. Physique, Volume 14 (2013) no. 7, pp. 564-577.

Du fait de leurs rapports dʼaspect extrêmement élevés, la plupart des films fins sont instables et, lorsquʼils sont chauffés, ils démouillent ou sʼagglomèrent pour former des îlots. Ce processus peut se produire à lʼétat solide grâce à la diffusion de surface induite par la capillarité. Un trait caractéristique du processus de démouillage est la rétractation des bords du film, quʼils soient naturels ou structurés, ou autour des trous qui se forment dans le film. Des modèles de rétractation de bords ont été précédemment développés pour des matériaux isotropes et anisotropes avec des surfaces différentiables, mais les effets du facettage dans les matériaux hautement anisotropes sont largement inexplorés. Nous présentons ici un modèle à deux dimensions de la rétractation des bords pour des films minces hautement anisotropes, complètement facettés. Ce modèle montre généralement un bon accord avec les résultats expérimentaux pour la rétractation de films de nickel monocristallins sur MgO. À la fois dans les expériences et le modèle, des fronts se forment lorsque les bords se rétractent. Les effets de lʼajustement de divers paramètres physiques sur le taux de rétractation des bords et la géométrie des bourrelets en évolution ont été explorés en utilisant le modèle. Lʼépaisseur du film, lʼautodiffusivité de surface sur la facette supérieure du front, lʼangle de contact équivalent du film sur le substrat, ainsi que la valeur absolue des énergies de surface se sont révélés être les facteurs qui influencent le plus le taux de rétractation des bords. Dans les modèles isotropes et certains systèmes expérimentaux, des vallées se forment à lʼavant des fronts de rétractation et sʼapprofondissent pour entrer en contact avec le substrat et mener à la rupture du film. Notre modèle suggère que cette forme de rupture ne se produira pas lorsque le front est complètement facetté et que sa surface supérieure est une facette dʼéquilibre. Pourtant, cette rupture du film peut survenir via lʼamincissement de films ainsi que pour des films dont les surfaces supérieures ne forment pas de facettes dʼéquilibre.

Owing to their extremely aspect ratios, most thin films are unstable and when they are heated, they will dewet or agglomerate to form islands. This process can occur in the solid state through capillary-driven surface self-diffusion. A key feature of the dewetting process is the retraction of the edges of the film, either natural edges, patterned edges, or edges where holes have formed. Models of edge retraction have been previously developed for isotropic materials and anisotropic materials with differentiable surfaces, but the effects of faceting in highly anisotropic materials have been largely unexplored. Here, we present a two-dimensional model of edge retraction for highly anisotropic, fully-faceted thin films. This model shows generally good agreement with experimental results for edge retraction of single-crystal Ni films on MgO. In both experiments and the model, rims form as the edges retract. The effects of adjusting various physical parameters on the edge retraction rate and the evolving rim geometry were explored using the model. The film thickness, surface self-diffusivity on the top facet of the rim, the equivalent contact angle of the film on the substrate, and the absolute value of the surface energies were found to be the factors that have the greatest influence on the edge retraction rate. In isotropic models and some experimental systems, valleys form ahead of the retracting rims and deepen to contact the substrate and cause pinch-off. Our model suggests that this form of pinch-off will not occur when the rim is fully faceted and the top surface is an equilibrium facet. However, pinch-off can occur through film thinning and for films with top surfaces that do not form flat equilibrium facets.

Publié le :
DOI : 10.1016/j.crhy.2013.06.005
Keywords: Thin films, Dewetting, Capillarity, Crystalline, Anisotropic, Solid-state
Mot clés : Films minces, Démouillage, Capillarité, Milieux crystallins, Anisotropie, État solide

Rachel V. Zucker 1 ; Gye Hyun Kim 1 ; W. Craig Carter 1 ; Carl V. Thompson 1

1 Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
@article{CRPHYS_2013__14_7_564_0,
     author = {Rachel V. Zucker and Gye Hyun Kim and W. Craig Carter and Carl V. Thompson},
     title = {A model for solid-state dewetting of a fully-faceted thin film},
     journal = {Comptes Rendus. Physique},
     pages = {564--577},
     publisher = {Elsevier},
     volume = {14},
     number = {7},
     year = {2013},
     doi = {10.1016/j.crhy.2013.06.005},
     language = {en},
}
TY  - JOUR
AU  - Rachel V. Zucker
AU  - Gye Hyun Kim
AU  - W. Craig Carter
AU  - Carl V. Thompson
TI  - A model for solid-state dewetting of a fully-faceted thin film
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 564
EP  - 577
VL  - 14
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.06.005
LA  - en
ID  - CRPHYS_2013__14_7_564_0
ER  - 
%0 Journal Article
%A Rachel V. Zucker
%A Gye Hyun Kim
%A W. Craig Carter
%A Carl V. Thompson
%T A model for solid-state dewetting of a fully-faceted thin film
%J Comptes Rendus. Physique
%D 2013
%P 564-577
%V 14
%N 7
%I Elsevier
%R 10.1016/j.crhy.2013.06.005
%G en
%F CRPHYS_2013__14_7_564_0
Rachel V. Zucker; Gye Hyun Kim; W. Craig Carter; Carl V. Thompson. A model for solid-state dewetting of a fully-faceted thin film. Comptes Rendus. Physique, Volume 14 (2013) no. 7, pp. 564-577. doi : 10.1016/j.crhy.2013.06.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.06.005/

[1] R. Brandon; F.J. Bradshaw The mobility of the surface atoms of copper and silver evaporated deposits, March 1966 (Royal Aircraft Establishment Technical Report 66095)

[2] E. Jiran; C.V. Thompson Capillary instabilities in thin films, J. Electron. Mater., Volume 19 (1990), p. 1153

[3] E. Jiran; C.V. Thompson Capillary instabilities in thin, continuous films, Thin Solid Films, Volume 208 (1992), p. 23

[4] D. Danielson; D. Sparacin; M. Jurgen; L. Kimerling Surface-energy-driven dewetting theory of silicon-on-insulator agglomeration, J. Appl. Phys., Volume 100 (2006), p. 083507

[5] J. Ye; C.V. Thompson Mechanisms of complex morphological evolution during solid-state dewetting of single-crystal nickel thin films, Appl. Phys. Lett., Volume 97 (2010), p. 071904

[6] C. Jahan; O. Faynot; L. Tosti; J.M. Hartmann Agglomeration control during the selective epitaxial growth of Si raised sources and drains on ultra-thin silicon-on-insulator substrates, J. Cryst. Growth, Volume 280 (2005), p. 530

[7] S. Rath; M. Heilig; H. Port; J. Wrachtrup Periodic organic nanodot patterns for optical memory, Nano Lett., Volume 7 (2007), p. 3845

[8] M. Chhowalla; K.B.K. Teo; C. Ducati; N.L. Rupesinghe; G.A.J. Amaratunga; A.C. Ferrari; D. Roy; J. Robertson; W.I. Mine Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition, J. Appl. Phys., Volume 90 (2001), p. 5308

[9] V. Schmidt; J.V. Wittemann; S. Senz; U. Gosele Silicon nanowires: A review on aspects of their growth and their electrical properties, Adv. Mater., Volume 21 (2009), p. 2681

[10] A. Colli; A. Fasoli; P. Beecher; P. Servati; S. Pisana; Y. Fu; A. Flewitt; W. Mine; J. Robertson; C. Ducati; S. De Franceschi; S. Hofmann; A. Ferrari Thermal and chemical vapor deposition of Si nanowires: Shape control, dispersion and electrical properties, J. Appl. Phys., Volume 102 (2007), p. 034302

[11] J. Mizsei Activating technology of SnO2 layers by metal particles from ultra thin metal films, Sens. Actuators B, Chem. (1993), p. 328

[12] R. Nuryadi; Y. Ishikawa; M. Tabe Formation and ordering of self-assembled Si islands by ultrahigh vacuum annealing of ultrathin bonded silicon-on-insulator structure, Appl. Surf. Sci., Volume 159 (2000), p. 121

[13] P. Sutter; W. Ernst; Y.S. Choi; E. Sutter Mechanisms of thermally induced dewetting of ultrathin silicon-on-insulator, Appl. Phys. Lett., Volume 88 (2006), p. 141924

[14] Y. Fan; R. Nuryadi; Z. Burhanudin; M. Tabe Thermal agglomeration of ultrathin silicon-on-insulator layers: Crystalline orientation dependence, Jpn. J. Appl. Phys., Volume 47 (2008), p. 1461

[15] J. Ye; C.V. Thompson Templated solid-state dewetting to controllably produce complex patterns, Adv. Mater., Volume 23 (2011), p. 1567

[16] W.C. Carter; A.R. Roosen; J.W. Cahn; J.E. Taylor Shape evolution by surface attachment limited kinetics on completely faceted surfaces, Acta Metall. Mater., Volume 43 (1995), p. 4309

[17] D.J. Srolovitz; S.A. Safran Capillary instabilities in thin films. I. Energetics, J. Appl. Phys., Volume 60 (1986), p. 247

[18] W.W. Mullins Theory of thermal grooving, J. Appl. Phys., Volume 28 (1957), p. 333

[19] D.J. Srolovitz; S.A. Safran Capillary instabilities in thin films. II. Kinetics, J. Appl. Phys., Volume 60 (1986), p. 255

[20] H. Wong; P.W. Voorhees; M.J. Miksis; S.H. Davis Periodic mass shedding of a retracting solid film step, Acta Mater., Volume 48 (2000), p. 1719

[21] E. Dornel; J.-C. Barbé; F. de Crécy; G. Lacolle; J. Eymery Surface diffusion dewetting of thin solid films: Numerical method and application to Si/SiO2, Phys. Rev. B, Volume 73 (2006), p. 115427

[22] J. Ye; C.V. Thompson Regular pattern formation through the retraction and pinch-off of edges during solid-state dewetting of patterned single crystal films, Phys. Rev. B, Volume 82 (2010), p. 193408

[23] J. Ye; C.V. Thompson Anisotropic edge retraction and hole growth during solid-state dewetting of single crystal nickel thin films, Acta Mater., Volume 59 (2011), p. 582

[24] E. Bussmann; F. Cheynis; F. Leroy; P. Muller; O. Pierre-Louis Dynamics of solid thin-film dewetting in the silicon-on-insulator system, New J. Phys., Volume 13 (2011), p. 043017

[25] L. Klinger; D. Amram; E. Rabkin Kinetics of a retracting solid film edge: The case of high surface anisotropy, Scr. Mater., Volume 64 (2011), p. 962

[26] G.H. Kim; R.V. Zucker; J. Ye; W.C. Carter; C.V. Thompson Quantitative analysis of anisotropic edge retraction by solid-state dewetting of thin single crystal films, J. Appl. Phys. (2013) (in press)

[27] F. Leroy; F. Cheynis; T. Passanante; P. Mueller Dynamics, anisotropy, and stability of silicon-on-insulator dewetting fronts, Phys. Rev. B, Volume 85 (2012), p. 195414

[28] W. Kan; H. Wong Fingering instability of retracting solid film edge, J. Appl. Phys., Volume 97 (2005), p. 043515

[29] The Physics of Powder Metallurgy (C. Herring; W.E. Kingston, eds.), McGraw–Hill, New York, 1951, p. 143

[30] W. Zhang; I. Gladwell Evolution of two-dimensional crystal morphologies by surface diffusion with anisotropic surface free energies, Comput. Mater. Sci., Volume 27 (2003), p. 461

[31] J.E. Taylor Mean curvature and weighted mean curvature, Acta Metall. Mater., Volume 40 (1992), p. 1475

[32] G. Wulff Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Kristallflächen, Z. Kristallogr., Volume 34 (1901), p. 449

[33] W.L. Winterbottom Equilibrium shape of a small particle in contact with a foreign substrate, Acta Metall., Volume 15 (1967), p. 303

[34] P.S. Maiya; J.M. Blakely Surface self-diffusion and surface energy of nickel, J. Appl. Phys., Volume 38 (1967), p. 698

[35] P.M. Agrawal; B.M. Rice; D.L. Thompson Predicting trends in rate parameters for self-diffusion of FCC metal surfaces, Surf. Sci., Volume 515 (2002), p. 21

[36] L. Vitos; A.V. Ruban; H.L. Skriver; J. Kollar The surface energy of metals, Surf. Sci., Volume 411 (1998), p. 186

[37] S. Seo; C. Euaruksakui; D.E. Savage; M.G. Lagally; P.G. Evans Nanostructure formation in the initial roughening of a thin silicon sheet, Phys. Rev. B, Volume 81 (2010) 041302(R)

[38] F. Buatier de Mongeot; W. Zhu; A. Molle; R. Buzio; C. Boragno; U. Valbusa; E.G. Wang; Z. Zhang Nanocrystal formation and faceting instability in A1(110) homoepitaxy: True upward adatom diffusion at step edges and island corner, Phys. Rev. Lett., Volume 91 (2003), p. 016102

Cité par Sources :

Commentaires - Politique