Comptes Rendus
Trends and perspectives in solid-state wetting / Mouillage solide–solide : tendances et perspectives
Interfacial reaction during dewetting of ultrathin silicon on insulator
[Réaction interfaciale au cours du démouillage de films ultrafins de silicium sur un isolant]
Comptes Rendus. Physique, Volume 14 (2013) no. 7, pp. 601-606.

Cet article sʼintéresse à la réaction interfaciale Si/SiO2 pendant le démouillage solide–solide de films ultrafins de Si(001) de 7 nm dʼépaisseur sur des substrats de SiO2. Immédiatement après formation de nanocristaux de silicium au front de démouillage, une dépression au niveau de lʼinterface Si/SiO2 survient sur le bord du nanocristal à cause de la réaction interfaciale. En examinant la morphologie de lʼinterface Si/SiO2 pour des nanocristaux situés à différentes distances du front de démouillage, nous mettons en évidence une croissance linéaire de la profondeur de lʼinterface avec le temps. Nous avons aussi estimé lʼénergie dʼactivation effective de la dépression interfaciale à environ 3,9 eV. De plus, nous expliquons lʼeffet de la réaction interfaciale sur le changement morphologique actif impliqué dans la propagation du front de démouillage.

We have studied the Si/SiO2 interfacial reaction during solid-state dewetting of 7-nm-thick Si(001) ultrathin films on SiO2 substrates. Immediately after formation of Si nanocrystals at the dewetting front, Si/SiO2 interface depression occurs at the edge of the nanocrystal because of the interfacial reaction. By examining the Si/SiO2 interface morphology for nanocrystals at different distances from the dewetting front, we found that the interface depth increases linearly with time. We also estimated that the effective activation energy for the interfacial depression is about 3.9 eV. Furthermore, we explain the effect of the interfacial reaction on the active morphological change involved in dewetting front propagation.

Publié le :
DOI : 10.1016/j.crhy.2013.06.008
Keywords: Interfacial reaction, Dewetting, Nanocrystal, Silicon on insulator
Mot clés : Réaction interfaciale, Démouillage, Nanocristal, Silicium sur isolant

Koichi Sudoh 1 ; Muneyuki Naito 2

1 The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
2 Department of Chemistry, Konan University, Okamoto, Higashinada, Kobe, Hyogo 658-8501, Japan
@article{CRPHYS_2013__14_7_601_0,
     author = {Koichi Sudoh and Muneyuki Naito},
     title = {Interfacial reaction during dewetting of ultrathin silicon on insulator},
     journal = {Comptes Rendus. Physique},
     pages = {601--606},
     publisher = {Elsevier},
     volume = {14},
     number = {7},
     year = {2013},
     doi = {10.1016/j.crhy.2013.06.008},
     language = {en},
}
TY  - JOUR
AU  - Koichi Sudoh
AU  - Muneyuki Naito
TI  - Interfacial reaction during dewetting of ultrathin silicon on insulator
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 601
EP  - 606
VL  - 14
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.06.008
LA  - en
ID  - CRPHYS_2013__14_7_601_0
ER  - 
%0 Journal Article
%A Koichi Sudoh
%A Muneyuki Naito
%T Interfacial reaction during dewetting of ultrathin silicon on insulator
%J Comptes Rendus. Physique
%D 2013
%P 601-606
%V 14
%N 7
%I Elsevier
%R 10.1016/j.crhy.2013.06.008
%G en
%F CRPHYS_2013__14_7_601_0
Koichi Sudoh; Muneyuki Naito. Interfacial reaction during dewetting of ultrathin silicon on insulator. Comptes Rendus. Physique, Volume 14 (2013) no. 7, pp. 601-606. doi : 10.1016/j.crhy.2013.06.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.06.008/

[1] Y. Ono; M. Nagase; M. Tabe; Y. Takahashi Jpn. J. Appl. Phys., 34 (1995), pp. 1728-1735

[2] R. Nuryadi; Y. Ishikawa; M. Tabe Appl. Surf. Sci., 159–160 (2000), p. 121

[3] B. Legrand; V. Agache; J.P. Nys; V. Senez; D. Stievenard Appl. Phys. Lett., 76 (2000), p. 3271

[4] R. Nuryadi; Y. Ishikawa; Y. Ono; M. Tabe J. Vac. Sci. Technol. B, 20 (2002), pp. 167-172

[5] B. Legrand; V. Agache; T. Mélin; J.P. Nys; V. Senez; D. Stiévenard J. Appl. Phys., 91 (2002), pp. 106-111

[6] B. Yang; P. Zhang; D.E. Savage; M.G. Lagally; G. Lu; M. Huang; F. Liu Phys. Rev. B, 72 (2005), p. 235413

[7] D.T. Danielson; D.K. Sparacin; J. Michel; L.C. Kimerling J. Appl. Phys., 100 (2006), p. 083507

[8] P. Sutter; W. Ernst; Y.S. Choi; E. Sutter Appl. Phys. Lett., 88 (2006), p. 141924

[9] F. Cheynis; E. Bussmann; F. Leroy; T. Passanate; P. Müller Phys. Rev. B, 84 (2011), p. 245439

[10] E. Bussmann; F. Cheynis; F. Leroy; P. Müller; O. Pierre-Louis New J. Phys., 13 (2011), p. 043017

[11] M. Aouassa; L. Favre; A. Ronda; H. Maaref; I. Berbezier New J. Phys., 14 (2012), p. 063038

[12] D. Srolovitz; S. Safran J. Appl. Phys., 60 (1986), p. 2555

[13] E. Dornel; J.-C. Barbé; F. de Crécy; G. Lacolle; J. Eymery Phys. Rev. B, 73 (2006), p. 115427

[14] O. Pierre-Louis; A. Chame; Y. Saito Phys. Rev. Lett., 103 (2009), p. 195501

[15] J.J. Lander; J. Morrison J. Appl. Phys., 33 (1962), p. 2089

[16] R. Tromp; G.W. Rubloff; P. Balk; F.K. LeGoues; E.J. van Loenen Phys. Rev. Lett., 55 (1985), p. 2332

[17] M. Liehr; J.E. Lewis; G.W. Rubloff J. Vac. Sci. Technol. A, 5 (1987), p. 1559

[18] K.E. Johnson; T. Engel Phys. Rev. Lett., 69 (1992), p. 339

[19] N. Miyata; H. Watanabe; M. Ichikawa Phys. Rev. Lett., 84 (2000), p. 1043

[20] H. Hibino; M. Uematsu; Y. Watanabe J. Appl. Phys., 100 (2006), p. 113519

[21] A. Chame; O. Pierre-Louis Phys. Rev. E, 85 (2012), p. 011602

[22] K. Sudoh; M. Naito J. Appl. Phys., 108 (2010), p. 083520

[23] H. Seidel; L. Csepregi; A. Heuberger; H. Baumgärtel J. Electrochem. Soc., 137 (1990), pp. 3612-3626

[24] S. Lee; D. Nichols Appl. Phys. Lett., 47 (1985), pp. 1001-1003

[25] R.C. Newman J. Phys. Condens. Matter, 12 (2000), p. R335-R365

Cité par Sources :

Commentaires - Politique