Where are we now, 25 years after the discovery of the first stable decagonal quasicrystal (DQC)? In this critical review, the status of research into these axial quasicrystals, which are quasiperiodic in two dimensions and periodic along the third, is discussed, and some of the open questions are addressed. We conclude that the structures of DQC are essentially known now, a few of them even as a function of temperature. Some hypotheses concerning DQC formation, growth and stability have still to be confirmed.
Cet article dresse un état des lieux de ce qui a été réalisé 25 ans après la découverte du premier quasicristal décagonal. Quasipériodiques selon deux dimensions et périodiques selon la troisième, ces quasicristaux posent encore de nombreuses questions, qui seront discutées ici. On verra que les structures atomiques de ces édifices sont globalement maintenant bien connues, y compris, pour certaines, quant à leur comportement en température. Certaines hypothèses concernant la formation, la croissance et la stabilité de ces phases méritent encore dʼêtre confirmées.
Mot clés : Quasicristaux, Phase décagonale, Phases intermétalliques complexes
Walter Steurer 1; Sofia Deloudi 1
@article{CRPHYS_2014__15_1_40_0, author = {Walter Steurer and Sofia Deloudi}, title = {Decagonal quasicrystals {\textendash} {What} has been achieved?}, journal = {Comptes Rendus. Physique}, pages = {40--47}, publisher = {Elsevier}, volume = {15}, number = {1}, year = {2014}, doi = {10.1016/j.crhy.2013.09.007}, language = {en}, }
Walter Steurer; Sofia Deloudi. Decagonal quasicrystals – What has been achieved?. Comptes Rendus. Physique, Volume 15 (2014) no. 1, pp. 40-47. doi : 10.1016/j.crhy.2013.09.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.09.007/
[1] et al. Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., Volume 53 (1984), p. 1951
[2] Quasicrystal with one-dimensional translational symmetry and a tenfold rotation axis, Phys. Rev. Lett., Volume 55 (1985), p. 1461
[3] et al. Electron-microscopy of quasi-crystals in rapidly solidified Al-14-percent Mn alloys, Scr. Metall., Volume 19 (1985), p. 767
[4] et al. Large AlCuLi single quasi-crystals with triacontahedral solidification morphology, Nature, Volume 324 (1986), p. 48
[5] Stable Decagonal quasi-crystals with different periodicities along the tenfold axis in Al65Cu20Co15, Mater. Trans., JIM, Volume 30 (1989), p. 300
[6] A stable decagonal quasicrystal in the Al–Cu–Co system, Mater. Trans., JIM, Volume 30 (1989), p. 300
[7] Stable decagonal Al–Co–Ni and Al–Co–Cu quasicrystals, Mater. Trans., JIM, Volume 30 (1989), p. 463
[8] Quasicrystal structure analysis, a never-ending story?, J. Non-Cryst. Solids, Volume 334 (2004), p. 137
[9] Twenty years of structure research on quasicrystals. Part 1. Pentagonal, octagonal, decagonal and dodecagonal quasicrystals, Z. Kristallogr., Volume 219 (2004), p. 391
[10] Tilings and quasicrystals; a non-local growth problem? (M.V. Jaric, ed.), Aperiodicity and Order, vol. 2, Academic Press Inc. Ltd., London, 1989, p. 53
[11] Crystallography of Quasicrystals – Concepts, Methods and Structures, Springer Series in Materials Science, vol. 126, Springer, Berlin, Heidelberg, 2009
[12] 5-dimensional structure-analysis of decagonal Al65Cu20Co15, Acta Crystallogr., Sect. B, Volume 46 (1990), p. 703
[13] et al. Comparative structural study of decagonal quasicrystals in the systems Al–Cu–Me (Me=Co, Rh, Ir), Acta Crystallogr., Sect. B, Volume 68 (2012), p. 578
[14] et al. Atomic-structure of a decagonal Al–Co–Ni quasi-crystal, Phys. Rev. Lett., Volume 65 (1990), p. 1603
[15] et al. The structure of decagonal Al70Co15Ni15, Acta Crystallogr., Sect. B, Volume 49 (1993), p. 661
[16] Structural analysis of the decagonal quasicrystal Al70Ni15Co15 using symmetry-adapted functions, J. Phys. I, Volume 5 (1995), p. 729
[17] et al. The structure of a decagonal Al72Ni20Co8 quasicrystal, Acta Crystallogr., Sect. A, Volume 57 (2001), p. 576
[18] et al. Structure solution of the basic decagonal Al–Co–Ni phase by the atomic surfaces modelling method, Acta Crystallogr., Sect. B, Volume 58 (2002), p. 8
[19] et al. Re-refinement of the basic decagonal Al–Co–Ni phase, Ferroelectrics, Volume 305 (2004), p. 257
[20] et al. Combined energy-diffraction data refinement of decagonal AlNiCo, J. Non-Cryst. Solids, Volume 334 (2004), p. 177
[21] et al. Physical space structure refinement of decagonal quasicrystal in rhombic Penrose tiling model, Z. Kristallogr., Volume 223 (2008), p. 847
[22] et al. Basic Co-rich decagonal Al–Co–Ni: Average structure, Phys. Rev. B, Volume 80 (2009), p. 184102
[23] et al. Basic Co-rich decagonal Al–Co–Ni: superstructure, Phys. Rev. B, Volume 82 (2010), p. 064107
[24] et al. Real space structure refinement of the basic Ni rich decagonal Al–Ni–Co phase, J. Phys. Conf. Ser., Volume 226 (2010), p. 012001
[25] et al. Structure refinement of decagonal Al–Ni–Co, superstructure type I, Philos. Mag., Volume 91 (2011), p. 2500
[26] 5-Dimensional structure refinement of decagonal Al78Mn22, J. Phys. Condens. Matter, Volume 3 (1991), p. 3397
[27] et al. The structure of decagonal Al70.5Mn16.5Pd13, J. Phys. Condens. Matter, Volume 6 (1994), p. 613
[28] et al. Structure refinement of quasicrystals (G. Chapuis; W. Paciorek, eds.), Aperiodic ʼ94, World Scientific, Singapore, 1995, pp. 393-398
[29] Quasicrystal structure modelling, Mater. Sci. Eng. A, Volume 226 (1997), p. 961
[30] Application of the five-dimensional maximum-entropy method to the structure refinement of decagonal Al70Mn17Pd13, Philos. Mag. A, Volume 76 (1997), p. 85
[31] Noncentrosymmetric structure of decagonal Al70Mn17Pd13 quasicrystal, Acta Crystallogr., Sect. A, Volume 54 (1998), p. 997
[32] Higher-dimensional modelling of decagonal quasicrystal structures, ETH, Zurich, Switzerland, 2002 (Thesis No. 14023)
[33] et al. New stable decagonal quasicrystal in the system Al–Ir–Os, J. Alloys Compd., Volume 428 (2007), p. 164
[34] Electron microscopy of quasicrystals – where are the atoms?, Chem. Soc. Rev., Volume 41 (2012), p. 6787
[35] T. Oers, W. Steurer, personal communication.
[36] et al. Unifying cluster-based structure models of decagonal Al–Co–Ni, Al–Co–Cu and Al–Fe–Ni, Acta Crystallogr., Sect. B, Volume 67 (2011), p. 1
[37] Highly-perfect decagonal quasicrystalline Al64Cu22Co14 with non-centrosymmetry, Philos. Mag., Volume 88 (2008), p. 1949
[38] et al. Classification of Voronoi and Delone tiles of quasicrystals: III. Decagonal acceptance window of any size, J. Phys. A, Volume 38 (2005), p. 1947
[39] A large columnar cluster of atoms in an Al–Cu–Rh decagonal quasicrystal studied by atomic-scale electron microscopy observations, Philos. Mag. Lett. (2001), p. 117
[40] Stable clusters in quasicrystals: fact or fiction?, Philos. Mag., Volume 86 (2006), p. 1105
[41] et al. Philos. Mag., 86 (2006), p. 1131
[42] Cluster packing from a higher-dimensional perspective, J. Struct. Chem., Volume 23 (2012), p. 115
[43] Properties- and applications of quasicrystals and complex metallic alloys, Chem. Soc. Rev., Volume 41 (2012), p. 6760
[44] Electrical and thermal transport properties of icosahedral and decagonal quasicrystals, Chem. Soc. Rev., Volume 41 (2012), p. 6730
[45] Structural building principles of complex face-centered cubic intermetallics, Acta Crystallogr., Sect. B, Volume 67 (2011), p. 269
[46] The structure of the liquid Al62Cu25.5TM12.5 (TM = Mn, Ni, Fe) alloys, Phys. Chem. Liq., Volume 51 (2013), p. 21
[47] On a realistic growth mechanism for quasicrystals, Z. Anorg. Allg. Chem., Volume 637 (2011), p. 1943
[48] Why are quasicrystals quasiperiodic?, Chem. Soc. Rev., Volume 41 (2012), p. 6719
[49] The periodic average structure of particular quasicrystals, Acta Crystallogr., Sect. A, Volume 55 (1999), p. 48
[50] General periodic average structures of decagonal quasicrystals, Acta Crystallogr., Sect. A, Volume 58 (2002), p. 180
[51] Higher-dimensional crystallography of N-fold quasiperiodic tilings, Acta Crystallogr., Sect. A, Volume 68 (2012), p. 266
[52] Quasiperiodicity in decagonal phases forced by inclined net planes?, Acta Crystallogr., Sect. A, Volume 57 (2001), p. 333
[53] et al. Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry, Proc. Natl. Acad. Sci. USA, Volume 108 (2011), p. 1810
[54] The quasicrystal-to-crystal transformation. I. Geometrical principles, Z. Kristallogr., Volume 215 (2000), p. 323
[55] Time-of-flight neutron-scattering study of phason hopping in decagonal Al–Co–Ni quasicrystals, Phys. Rev. B, Volume 60 (1999), p. 270
[56] A cluster approach to random Penrose tilings, Mater. Sci. Eng., Volume 294–296 (2000), p. 250 (p. 250)
[57] et al. High-temperature structural study of decagonal Al–Cu–Rh, Acta Crystallogr., Sect. B, Volume 69 (2013) (submitted for publication)
[58] Electronic properties of stable decagonal quasicrystals, Phys. Status Solidi A, Volume 207 (2010), p. 2666
[59] et al. Hume–Rothery stabilization mechanism and e/a determination for RT- and MI-type 1/1–1/1–1/1 approximants studied by FLAPW-Fourier analyses, Chem. Soc. Rev., Volume 41 (2012), p. 6799
Cited by Sources:
Comments - Policy