Comptes Rendus
Quasicrystals / Quasicristaux
Decagonal quasicrystals – What has been achieved?
Comptes Rendus. Physique, Volume 15 (2014) no. 1, pp. 40-47.

Where are we now, 25 years after the discovery of the first stable decagonal quasicrystal (DQC)? In this critical review, the status of research into these axial quasicrystals, which are quasiperiodic in two dimensions and periodic along the third, is discussed, and some of the open questions are addressed. We conclude that the structures of DQC are essentially known now, a few of them even as a function of temperature. Some hypotheses concerning DQC formation, growth and stability have still to be confirmed.

Cet article dresse un état des lieux de ce qui a été réalisé 25 ans après la découverte du premier quasicristal décagonal. Quasipériodiques selon deux dimensions et périodiques selon la troisième, ces quasicristaux posent encore de nombreuses questions, qui seront discutées ici. On verra que les structures atomiques de ces édifices sont globalement maintenant bien connues, y compris, pour certaines, quant à leur comportement en température. Certaines hypothèses concernant la formation, la croissance et la stabilité de ces phases méritent encore dʼêtre confirmées.

DOI: 10.1016/j.crhy.2013.09.007
Keywords: Quasicrystals, Decagonal phases, Intermetallics
Mot clés : Quasicristaux, Phase décagonale, Phases intermétalliques complexes

Walter Steurer 1; Sofia Deloudi 1

1 Laboratory of Crystallography, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
@article{CRPHYS_2014__15_1_40_0,
     author = {Walter Steurer and Sofia Deloudi},
     title = {Decagonal quasicrystals {\textendash} {What} has been achieved?},
     journal = {Comptes Rendus. Physique},
     pages = {40--47},
     publisher = {Elsevier},
     volume = {15},
     number = {1},
     year = {2014},
     doi = {10.1016/j.crhy.2013.09.007},
     language = {en},
}
TY  - JOUR
AU  - Walter Steurer
AU  - Sofia Deloudi
TI  - Decagonal quasicrystals – What has been achieved?
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 40
EP  - 47
VL  - 15
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.09.007
LA  - en
ID  - CRPHYS_2014__15_1_40_0
ER  - 
%0 Journal Article
%A Walter Steurer
%A Sofia Deloudi
%T Decagonal quasicrystals – What has been achieved?
%J Comptes Rendus. Physique
%D 2014
%P 40-47
%V 15
%N 1
%I Elsevier
%R 10.1016/j.crhy.2013.09.007
%G en
%F CRPHYS_2014__15_1_40_0
Walter Steurer; Sofia Deloudi. Decagonal quasicrystals – What has been achieved?. Comptes Rendus. Physique, Volume 15 (2014) no. 1, pp. 40-47. doi : 10.1016/j.crhy.2013.09.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.09.007/

[1] D. Shechtman et al. Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., Volume 53 (1984), p. 1951

[2] L. Bendersky Quasicrystal with one-dimensional translational symmetry and a tenfold rotation axis, Phys. Rev. Lett., Volume 55 (1985), p. 1461

[3] K. Chattopadhyay et al. Electron-microscopy of quasi-crystals in rapidly solidified Al-14-percent Mn alloys, Scr. Metall., Volume 19 (1985), p. 767

[4] B. Dubost et al. Large AlCuLi single quasi-crystals with triacontahedral solidification morphology, Nature, Volume 324 (1986), p. 48

[5] L.X. He Stable Decagonal quasi-crystals with different periodicities along the tenfold axis in Al65Cu20Co15, Mater. Trans., JIM, Volume 30 (1989), p. 300

[6] A.P. Tsai; A. Inoue; T. Masumoto A stable decagonal quasicrystal in the Al–Cu–Co system, Mater. Trans., JIM, Volume 30 (1989), p. 300

[7] A.P. Tsai; A. Inoue; T. Masumoto Stable decagonal Al–Co–Ni and Al–Co–Cu quasicrystals, Mater. Trans., JIM, Volume 30 (1989), p. 463

[8] W. Steurer Quasicrystal structure analysis, a never-ending story?, J. Non-Cryst. Solids, Volume 334 (2004), p. 137

[9] W. Steurer Twenty years of structure research on quasicrystals. Part 1. Pentagonal, octagonal, decagonal and dodecagonal quasicrystals, Z. Kristallogr., Volume 219 (2004), p. 391

[10] R. Penrose Tilings and quasicrystals; a non-local growth problem? (M.V. Jaric, ed.), Aperiodicity and Order, vol. 2, Academic Press Inc. Ltd., London, 1989, p. 53

[11] W. Steurer; S. Deloudi Crystallography of Quasicrystals – Concepts, Methods and Structures, Springer Series in Materials Science, vol. 126, Springer, Berlin, Heidelberg, 2009

[12] W. Steurer; K.H. Kuo 5-dimensional structure-analysis of decagonal Al65Cu20Co15, Acta Crystallogr., Sect. B, Volume 46 (1990), p. 703

[13] P. Kuczera et al. Comparative structural study of decagonal quasicrystals in the systems Al–Cu–Me (Me=Co, Rh, Ir), Acta Crystallogr., Sect. B, Volume 68 (2012), p. 578

[14] A. Yamamoto et al. Atomic-structure of a decagonal Al–Co–Ni quasi-crystal, Phys. Rev. Lett., Volume 65 (1990), p. 1603

[15] W. Steurer et al. The structure of decagonal Al70Co15Ni15, Acta Crystallogr., Sect. B, Volume 49 (1993), p. 661

[16] L. Elcoro; J.M. Perez-Mato Structural analysis of the decagonal quasicrystal Al70Ni15Co15 using symmetry-adapted functions, J. Phys. I, Volume 5 (1995), p. 729

[17] H. Takakura et al. The structure of a decagonal Al72Ni20Co8 quasicrystal, Acta Crystallogr., Sect. A, Volume 57 (2001), p. 576

[18] A. Cervellino et al. Structure solution of the basic decagonal Al–Co–Ni phase by the atomic surfaces modelling method, Acta Crystallogr., Sect. B, Volume 58 (2002), p. 8

[19] H. Takakura et al. Re-refinement of the basic decagonal Al–Co–Ni phase, Ferroelectrics, Volume 305 (2004), p. 257

[20] M. Mihalkovic et al. Combined energy-diffraction data refinement of decagonal AlNiCo, J. Non-Cryst. Solids, Volume 334 (2004), p. 177

[21] J. Wolny et al. Physical space structure refinement of decagonal quasicrystal in rhombic Penrose tiling model, Z. Kristallogr., Volume 223 (2008), p. 847

[22] A. Strutz et al. Basic Co-rich decagonal Al–Co–Ni: Average structure, Phys. Rev. B, Volume 80 (2009), p. 184102

[23] A. Strutz et al. Basic Co-rich decagonal Al–Co–Ni: superstructure, Phys. Rev. B, Volume 82 (2010), p. 064107

[24] P. Kuczera et al. Real space structure refinement of the basic Ni rich decagonal Al–Ni–Co phase, J. Phys. Conf. Ser., Volume 226 (2010), p. 012001

[25] P. Kuczera et al. Structure refinement of decagonal Al–Ni–Co, superstructure type I, Philos. Mag., Volume 91 (2011), p. 2500

[26] W. Steurer 5-Dimensional structure refinement of decagonal Al78Mn22, J. Phys. Condens. Matter, Volume 3 (1991), p. 3397

[27] W. Steurer et al. The structure of decagonal Al70.5Mn16.5Pd13, J. Phys. Condens. Matter, Volume 6 (1994), p. 613

[28] A. Yamamoto et al. Structure refinement of quasicrystals (G. Chapuis; W. Paciorek, eds.), Aperiodic ʼ94, World Scientific, Singapore, 1995, pp. 393-398

[29] M. Mihalkovic; P. Mrafko Quasicrystal structure modelling, Mater. Sci. Eng. A, Volume 226 (1997), p. 961

[30] S. Weber; A. Yamamoto Application of the five-dimensional maximum-entropy method to the structure refinement of decagonal Al70Mn17Pd13, Philos. Mag. A, Volume 76 (1997), p. 85

[31] S. Weber; A. Yamamoto Noncentrosymmetric structure of decagonal Al70Mn17Pd13 quasicrystal, Acta Crystallogr., Sect. A, Volume 54 (1998), p. 997

[32] A. Cervellino Higher-dimensional modelling of decagonal quasicrystal structures, ETH, Zurich, Switzerland, 2002 (Thesis No. 14023)

[33] S. Katrych et al. New stable decagonal quasicrystal in the system Al–Ir–Os, J. Alloys Compd., Volume 428 (2007), p. 164

[34] E. Abe Electron microscopy of quasicrystals – where are the atoms?, Chem. Soc. Rev., Volume 41 (2012), p. 6787

[35] T. Oers, W. Steurer, personal communication.

[36] S. Deloudi et al. Unifying cluster-based structure models of decagonal Al–Co–Ni, Al–Co–Cu and Al–Fe–Ni, Acta Crystallogr., Sect. B, Volume 67 (2011), p. 1

[37] S. Taniguchi; E. Abe Highly-perfect decagonal quasicrystalline Al64Cu22Co14 with non-centrosymmetry, Philos. Mag., Volume 88 (2008), p. 1949

[38] Z. Masakova et al. Classification of Voronoi and Delone tiles of quasicrystals: III. Decagonal acceptance window of any size, J. Phys. A, Volume 38 (2005), p. 1947

[39] K. Hiraga A large columnar cluster of atoms in an Al–Cu–Rh decagonal quasicrystal studied by atomic-scale electron microscopy observations, Philos. Mag. Lett. (2001), p. 117

[40] W. Steurer Stable clusters in quasicrystals: fact or fiction?, Philos. Mag., Volume 86 (2006), p. 1105

[41] C.L. Henley et al. Philos. Mag., 86 (2006), p. 1131

[42] W. Steurer; S. Deloudi Cluster packing from a higher-dimensional perspective, J. Struct. Chem., Volume 23 (2012), p. 115

[43] J.-M. Dubois Properties- and applications of quasicrystals and complex metallic alloys, Chem. Soc. Rev., Volume 41 (2012), p. 6760

[44] J. Dolinšek Electrical and thermal transport properties of icosahedral and decagonal quasicrystals, Chem. Soc. Rev., Volume 41 (2012), p. 6730

[45] J. Dshemuchadse; D.Y. Jung; W. Steurer Structural building principles of complex face-centered cubic intermetallics, Acta Crystallogr., Sect. B, Volume 67 (2011), p. 269

[46] O.S. Roik; V.P. Kazimirov; S.M. Galushko The structure of the liquid Al62Cu25.5TM12.5 (TM = Mn, Ni, Fe) alloys, Phys. Chem. Liq., Volume 51 (2013), p. 21

[47] W. Steurer On a realistic growth mechanism for quasicrystals, Z. Anorg. Allg. Chem., Volume 637 (2011), p. 1943

[48] W. Steurer Why are quasicrystals quasiperiodic?, Chem. Soc. Rev., Volume 41 (2012), p. 6719

[49] W. Steurer; T. Haibach The periodic average structure of particular quasicrystals, Acta Crystallogr., Sect. A, Volume 55 (1999), p. 48

[50] A. Cervellino; W. Steurer General periodic average structures of decagonal quasicrystals, Acta Crystallogr., Sect. A, Volume 58 (2002), p. 180

[51] S. Deloudi; W. Steurer Higher-dimensional crystallography of N-fold quasiperiodic tilings, Acta Crystallogr., Sect. A, Volume 68 (2012), p. 266

[52] W. Steurer; A. Cervellino Quasiperiodicity in decagonal phases forced by inclined net planes?, Acta Crystallogr., Sect. A, Volume 57 (2001), p. 333

[53] S. Fischer et al. Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry, Proc. Natl. Acad. Sci. USA, Volume 108 (2011), p. 1810

[54] W. Steurer The quasicrystal-to-crystal transformation. I. Geometrical principles, Z. Kristallogr., Volume 215 (2000), p. 323

[55] G. Coddens; W. Steurer Time-of-flight neutron-scattering study of phason hopping in decagonal Al–Co–Ni quasicrystals, Phys. Rev. B, Volume 60 (1999), p. 270

[56] P. Gummelt; C. Bandt A cluster approach to random Penrose tilings, Mater. Sci. Eng., Volume 294–296 (2000), p. 250 (p. 250)

[57] P. Kuczera et al. High-temperature structural study of decagonal Al–Cu–Rh, Acta Crystallogr., Sect. B, Volume 69 (2013) (submitted for publication)

[58] D. Zhang Electronic properties of stable decagonal quasicrystals, Phys. Status Solidi A, Volume 207 (2010), p. 2666

[59] U. Mitzutani et al. Hume–Rothery stabilization mechanism and e/a determination for RT- and MI-type 1/1–1/1–1/1 approximants studied by FLAPW-Fourier analyses, Chem. Soc. Rev., Volume 41 (2012), p. 6799

Cited by Sources:

Comments - Policy