[Cristallochimie et ordre chimique dans les quasicristaux et approximants dʼalliages ternaires]
Cet article discute notre compréhension actuelle de la formation, de la stabilité et de la structure atomique des quasicristaux icosaédriques et de leurs approximants. Plus particulièrement consacré aux phases de type Cd–Yb, il présente plusieurs concepts qui sont applicables aux autres familles de phases icosaédriques et dʼapproximants. Ainsi, on discutera ici lʼordre chimique et les sites préférentiels dans les amas atomiques pour les systèmes ternaires, la concentration des électrons de valence et son influence sur la formation et la composition des amas atomiques, blocs constitutifs des structures, et les connexions entre amas, en soulignant les similarités et les différences entre les diverses familles de quasicristaux icosaédriques et leurs approximants.
In this work we review our current understanding of structure, stability and formation of icosahedral quasicrystals and approximants. The work has special emphasis on Cd–Yb type phases, but several concepts are generalized to other families of icosahedral quasicrystals and approximants. The paper handles topics such as chemical order and site preference at the cluster level for ternary phases, valence electron concentration and its influence on formation and composition, fundamental building blocks and cluster linkages, and the similarities and differences between different families of icosahedral quasicrystals and approximants.
Mots-clés : Quasicristaux, Approximants, Amas atomique, Ordre chimique, Rapport électron sur atome, Structure de type Cd–Yb
Cesar Pay Gómez 1 ; An Pang Tsai 2
@article{CRPHYS_2014__15_1_30_0, author = {Cesar Pay G\'omez and An Pang Tsai}, title = {Crystal chemistry and chemical order in ternary quasicrystals and approximants}, journal = {Comptes Rendus. Physique}, pages = {30--39}, publisher = {Elsevier}, volume = {15}, number = {1}, year = {2014}, doi = {10.1016/j.crhy.2013.10.007}, language = {en}, }
Cesar Pay Gómez; An Pang Tsai. Crystal chemistry and chemical order in ternary quasicrystals and approximants. Comptes Rendus. Physique, Quasicristaux / Quasicrystals, Volume 15 (2014) no. 1, pp. 30-39. doi : 10.1016/j.crhy.2013.10.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.10.007/
[1] Phys. Rev. Lett., 56 (1986), p. 861
[2] Nat. Mater., 6 (2007), p. 58
[3] J. Nat., 408 (2000), p. 537
[4] Order and Disorder in the RE–Cd and Related Systems, Stockholm University, Stockholm, 2003, p. 54
[5] Angew. Chem., Int. Ed. Engl., 40 (2001), p. 4037
[6] Phys. Rev. B, 68 (2003), p. 024203(1)
[7] Z. Naturforsch., B, 61 (2006), p. 644
[8] C. Pay Gómez, G.H. Gebresenbut, M. Valldor, in preparation.
[9] J. Am. Chem. Soc., 128 (2006), p. 13268
[10] Philos. Mag., 87 (2007), p. 2721
[11] J. Am. Chem. Soc., 129 (2007), p. 6789
[12] Mater. Trans., 50 (2009), p. 948
[13] Philos. Mag., 91 (2011), p. 4218
[14] J. Phys. Condens. Matter, 25 (2013), p. 135402
[15] Jpn. J. Appl. Phys., 39 (2000), p. L770
[16] Inorg. Chem., 49 (2010), p. 10436
[17] Philos. Mag. Lett., 82 (2002), p. 349
[18] Phys. Rev. B, 81 (2010), p. 020201(R)
[19] J. Non-Cryst. Solids, 334–335 (2004), p. 1
[20] Philos. Mag. Lett., 81 (2001), p. 777
[21] Philos. Mag. Lett., 82 (2002), p. 483
[22] Philos. Mag. Lett., 84 (2004), p. 215
[23] Quasicrystals (T. Fujiwara; Y. Ishii, eds.), Elsevier, 2008, p. 49
[24] J. Non-Cryst. Solids, 334–335 (2004), p. 317
[25] Jpn. J. Appl. Phys., 47 (2008), p. 7975
[26] Inorg. Chem., 47 (2008), p. 7651
[27] Philos. Mag., 87 (2007), p. 3089
[28] Philos. Mag. Lett., 85 (2005), p. 289
[29] Acta Mater., 57 (2009), p. 4727
[30] Inorg. Chem., 47 (2008), p. 8258
[31] Nat. Mater., 6 (2007), p. 11
[32] Acta Crystallogr., 10 (1957), p. 254
[33] Proc. Natl. Acad. Sci. USA, 103 (2006), p. 13589
[34] Acta Crystallogr. A, 58 (2002), p. 391
[35] Z. Kristallogr., 213 (1998), p. 168
[36] Z. Kristallogr., 213 (1998), p. 90
[37] Acta Crystallogr. A, 69 (2013), p. 322
- Atomic structure of the unique antiferromagnetic 2/1 quasicrystal approximant, Physical Review B, Volume 107 (2023) no. 18 | DOI:10.1103/physrevb.107.184110
- Hybrid DFT/Data-Driven Approach for Searching for New Quasicrystal Approximants in Sc-X (X = Rh, Pd, Ir, Pt) Systems, Crystal Growth Design, Volume 22 (2022) no. 7, p. 4570 | DOI:10.1021/acs.cgd.2c00463
- Superstructure formation in a ternary Yb-Cd-Mg 1/1 quasicrystal approximant, Philosophical Magazine, Volume 101 (2021) no. 3, p. 257 | DOI:10.1080/14786435.2020.1832706
- Chemical speciation in Gd−Cd−M (M=Zn, Au) quasicrystal approximants, Zeitschrift für anorganische und allgemeine Chemie, Volume 647 (2021) no. 2-3, p. 86 | DOI:10.1002/zaac.202000414
- New Quasicrystal Approximant in the Sc–Pd System: From Topological Data Mining to the Bench, Chemistry of Materials, Volume 32 (2020) no. 3, p. 1064 | DOI:10.1021/acs.chemmater.9b03767
- Synthesis and Atomic Structure of the Yb–Ga–Au 1/1 Quasicrystal Approximant, Inorganic Chemistry, Volume 58 (2019) no. 9, p. 6320 | DOI:10.1021/acs.inorgchem.9b00513
- , PROCEEDINGS OF THE 23RD INTERNATIONAL SCIENTIFIC CONFERENCE OF YOUNG SCIENTISTS AND SPECIALISTS (AYSS-2019), Volume 2163 (2019), p. 020003 | DOI:10.1063/1.5130082
- Formation and crystallographic orientation study of quasicrystal, 2/1 and 1/1 approximants in Cd–Mg–Y system using electron backscatter diffraction (EBSD), Philosophical Magazine, Volume 99 (2019) no. 12, p. 1528 | DOI:10.1080/14786435.2019.1585589
- From Quasicrystals to Crystals with Interpenetrating Icosahedra in Ca–Au–Al: In Situ Variable-Temperature Transformation, Journal of the American Chemical Society, Volume 140 (2018) no. 4, p. 1337 | DOI:10.1021/jacs.7b10358
- Long range ordered magnetic and atomic structures of the quasicrystal approximant in the Tb-Au-Si system, Journal of Physics: Condensed Matter, Volume 26 (2014) no. 32, p. 322202 | DOI:10.1088/0953-8984/26/32/322202
Cité par 10 documents. Sources : Crossref
Commentaires - Politique