[Réponses de Hall quantique et à la lumière dans un semimétal topologique à 2D]
Nous avons récemment introduit en théorie un semimétal topologiquement protégé dans un plan de graphène qui présente un mode d’énergie nulle robuste aux interactions et au désordre. Nous adressons ici les caractéristiques de transport et la réponse à la lumière résonante polarisée circulairement de ce semimétal résolue aux points de Dirac. Nous montrons que la conductivité de Hall de la bande du bas est topologique et révèle un invariant qui est mesuré par la lumière. Nous montrons aussi que la conductivité de Hall associée aux bandes intermédiaires peut être évaluée rigoureusement en présence d’un croisement de bandes, incluant la surface de Fermi, et introduisons l’existence d’un invariant topologique 2 associé. Nous élaborons sur la correspondance avec la physique des états de bords comme un demi-métal topologique protégé i.e. une des populations de spin polarisée dans le plan est dans une phase isolante en relation avec le mode d’énergie nulle dans le spectre d’énergie alors que l’autre population de spin est dans un régime métallique. Le transport quantifié aux bords du système est aussi équivalent à une demi-conductance pour les populations de spin le long de la direction z. Nous formulons un parallèle entre la réponse de Hall topologique et une paire de nombres topologiques ½ correspondant à une paire de ½-Skyrmions à travers l’étude de la réponse de la lumière résolue dans l’espace réciproque et sur la sphère.
We have recently identified a protected topological semimetal in graphene which presents a zero-energy edge mode robust to disorder and interactions. Here, we address the characteristics of this semimetal and show that the topological invariant of the Hall conductivity associated to the lowest energy band can be equivalently measured from the resonant response to circularly polarized light resolved at the Dirac points. The (non-quantized) conductivity responses of the intermediate energy bands, including the Fermi surface, also give rise to a 2 invariant. We emphasize on the bulk-edge correspondence as a protected topological half metal, i.e. one spin-population polarized in the plane is in the insulating phase related to the robust edge mode while the other is in the metallic regime. The quantized transport at the edges is equivalent to a conductance for spin polarizations along z direction. We also build a parallel between the topological Hall response and a pair of half numbers (half Skyrmions) through the light response locally resolved in momentum space and on the sphere.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Systèmes Topologiques, Semimétaux, Conductivité de Hall, Réponse à la lumière circulaire
Karyn Le Hur 1 ; Sariah Al Saati 1
@article{CRPHYS_2024__25_G1_415_0, author = {Karyn Le Hur and Sariah Al Saati}, title = {Quantum {Hall} and {Light} {Responses} in a {2D} {Topological} {Semimetal}}, journal = {Comptes Rendus. Physique}, pages = {415--432}, publisher = {Acad\'emie des sciences, Paris}, volume = {25}, year = {2024}, doi = {10.5802/crphys.202}, language = {en}, }
Karyn Le Hur; Sariah Al Saati. Quantum Hall and Light Responses in a 2D Topological Semimetal. Comptes Rendus. Physique, Volume 25 (2024), pp. 415-432. doi : 10.5802/crphys.202. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.202/
[1] Quantized Hall Conductance in a Two-Dimensional Periodic Potential, Phys. Rev. Lett., Volume 49 (1982) no. 6, pp. 405-408 | DOI
[2] Topological Invariant and the Quantization of the Hall Conductance, Ann. Phys., Volume 160 (1985) no. 2, pp. 343-354 | DOI
[3] Probing topology by ‘heating’: Quantized circular dichroism in ultracold atoms, Sci. adv., Volume 3 (2017), e1701207 | DOI
[4] et al. Measuring quantized circular dichroism in ultracold topological matter, Nat. Phys., Volume 15 (2019), pp. 449-454 | DOI
[5] Interacting Stochastic Topology and Mott Transition from Light Response, Phys. Rev. B, Volume 103 (2021), 035114 | DOI
[6] Global and local topological quantized responses from geometry, light, and time, Phys. Rev. B, Volume 105 (2022), 125106 | DOI
[7] Spectroscopy and topological properties of a Haldane light system, Phys. Rev. A, Volume 109 (2024), L021701 | DOI
[8] Possibility of Orienting Electron Spins with Current, Sov. Phys. JETP, Volume 13 (1971), p. 467
[9] Dissipationless Quantum Spin Current at Room Temperature, Science, Volume 301 (2003) no. 5638, pp. 1348-1351 | DOI
[10] Quantum Spin Hall Effect in Graphene, Phys. Rev. Lett., Volume 95 (2005) no. 22, 226801 | DOI
[11] Topological Order and the Quantum Spin Hall Effect, Phys. Rev. Lett., Volume 95 (2005) no. 14, 146802 | DOI
[12] Topological insulators and Mott physics from the Hubbard interaction, Phys. Rev. B, Volume 82 (2010), 075106 | DOI
[13] Quantum Spin Hall Insulators with Interactions and Lattice Anisotropy, Phys. Rev. B, Volume 85 (2012), 205102 | DOI
[14] Correlation Effects in Quantum Spin-Hall Insulators: A Quantum Monte Carlo Study, Phys. Rev. B, Volume 106 (2011), 100403 | DOI
[15] Quantum Spin Hall Effect, Phys. Rev. Lett., Volume 96 (2006) no. 10, 106802 | DOI
[16] Nondissipative Spin Hall Effect via Quantized Edge Transport, Phys. Rev. Lett., Volume 95 (2005), 136602 | DOI
[17] Topological insulators with inversion symmetry, Phys. Rev. B, Volume 76 (2007), 045302 | DOI
[18] Topological nodal ring semimetal in graphene, Phys. Rev. B, Volume 107 (2023) no. 16, 165407 | DOI
[19] Analytical approach for the Mott transition in the Kane–Mele–Hubbard model, Phys. Rev. B, Volume 104 (2021), 075120 | DOI
[20] Hubbard model on the kagome lattice with time-reversal invariant flux and spin-orbit coupling, Phys. Rev. B, Volume 105 (2022), 235102 | DOI
[21] Berry Curvature on the Fermi Surface: Anomalous Hall Effect as a Topological Fermi-Liquid Property, Phys. Rev. Lett., Volume 93 (2004) no. 20, 206602 | DOI
[22] Quantum entangled fractional topology and curvatures, Commun. Phys., Volume 4 (2021) no. 1, 144 | DOI
[23] One-Half Topological Number in Entangled Quantum Physics, Phys. Rev. B, Volume 108 (2023), 235144 | DOI
[24] Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the ‘Parity Anomaly’, Phys. Rev. Lett., Volume 61 (1988) no. 18, pp. 2015-2018 | DOI
[25] Condensed-Matter Simulation of a Three-Dimensional Anomaly, Phys. Rev. Lett., Volume 53 (1984) no. 26, pp. 2449-2452 | DOI
[26] Interacting topological quantum aspects with light and geometrical functions, Phys. Rep., Volume 1104 (2025), pp. 1-42 (see also arXiv:2209.15381, 108 pages) | DOI
[27] Light-induced anomalous Hall effect in graphene, Nat. Phys., Volume 16 (2020), pp. 38-41 | DOI
[28] Topological proximity effects in a Haldane graphene bilayer system, Phys. Rev. B, Volume 100 (2019), 081107 | DOI
[29] Topological invariant for two-dimensional open systems, Phys. Rev. B, Volume 19 (2018), 195434 | DOI
[30] Bulk Topological Proximity Effect, Phys. Rev. Lett., Volume 116 (2016), 086802 | DOI
[31] Topological proximity effect in a topological insulator hybrid, Nat. Commun., Volume 6 (2015), 6547 | DOI
[32] Strong interface-induced spin-orbit interaction in graphene on WS, Nat. Commun., Volume 6 (2015) no. 1, 8339 | DOI
[33] Observation of Time-Reversal Invariant Helical Edge-Modes in Bilayer Graphene/WSe Heterostructure, ACS Nano, Volume 15 (2020) no. 1, pp. 916-922 | DOI
[34] et al. Spin-orbit proximity in MoS/bilayer graphene heterostructures, Nat. Commun., Volume 15 (2024), 9251 | DOI
[35] Colloquium: Quantum anomalous Hall effect, Rev. Mod. Phys., Volume 95 (2023) no. 4, 011002 | DOI
[36] Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond., Ser. A, Volume 392 (1984) no. 1802, pp. 45-57 | DOI
[37] Introduction to Dirac materials and topological insulators, Comptes Rendus. Physique, Volume 14 (2013), pp. 760-778 | DOI
[38] Momentum space metric, nonlocal operator, and topological insulators, Phys. Rev. B, Volume 82 (2010), 245113 | DOI
[39] Topology of a dissipative spin: dynamical Chern number, bath induced non-adiabaticity and a quantum dynamo effect, Phys. Rev. B, Volume 95 (2017), 054307 | DOI
[40] Detecting Fractional Chern Insulators through Circular Dichroism, Phys. Rev. Lett., Volume 122 (2019), 166801 | DOI
[41] Fractional Topology in Interacting 1D Superconductors, Phys. Rev. B, Volume 107 (2023), 155134 | DOI
[42] Majorana fermions and quantum information with fractional topology and disorder, Physical Rev. Research, Volume 5 (2024), 023221 | DOI
[43] Thomas Precession, Berry potential and the Meron, Phys. Rev. Lett., Volume 73 (1994) no. 14, pp. 1565-1569 | DOI
Cité par Sources :
Commentaires - Politique