The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensity Equation. Among these approaches, image-plane off-axis electron holography in the transmission electron microscope has acquired a prominent role thanks to its quantitative capabilities and broad range of applicability. After a brief overview of the main ideas and methods behind field mapping, we focus on theoretical models that form the basis of the quantitative interpretation of electron holographic data. We review the application of electron holography to a variety of samples (including electric fields associated with p–n junctions in semiconductors, quantized magnetic flux in superconductors and magnetization topographies in nanoparticles and other magnetic materials) and electron-optical geometries (including multiple biprism, amplitude and mixed-type set-ups). We conclude by highlighting the emerging perspectives of (i) three-dimensional field mapping using electron holographic tomography and (ii) the model-independent determination of the locations and magnitudes of field sources (electric charges and magnetic dipoles) directly from electron holographic data.
La cartographie de champs électriques et magnétiques statiques avec une sonde d'électrons à un niveau de résolution et de sensibilité suffisant pour révéler des variations à l'échelle nanométrique requiert l'utilisation de méthodes sensibles à la phase, telles que la technique de l'ombrage, l'imagerie cohérente en mode de Foucault ou l'équation de transport de l'intensité (TIE). Parmi ces différentes approches, l'holographie électronique « hors axe » en microscopie électronique à transmission joue un rôle prépondérant, en raison de son caractère quantitatif et de son vaste domaine d'utilisation. Après une brève revue des principales idées et méthodes sous-jacentes, nous nous attacherons à décrire les modèles théoriques qui constituent le fondement de l'interprétation quantitative des données holographiques. Nous passerons rapidement en revue l'utilisation de l'holographie électronique pour étudier un grand nombre d'échantillons avec leurs champs électriques et magnétiques associés : jonctions dans les semi-conducteurs, lignes de flux magnétique quantifié dans les supraconducteurs, topographies du champ magnétique dans et autour de nanoparticules et autres… Les aspects relatifs aux géométries utilisées en optique électronique (doubles biprismes et dispositifs mixtes pour jouer sur la phase et l'amplitude) sont aussi mentionnés. Enfin, nous identifions plusieurs perspectives émergentes de grand intérêt : (i) la cartographie tridimensionnelle de champs en associant tomographie et holographie, (ii) la détermination de la position et de l'intensité de sources de champ (charges électriques et dipôles magnétiques) directement à partir des données holographiques.
Mot clés : Microscopie électronique en transmission, Holographie électronique, Cartographie de champs, Champs électriques, Champs magnétiques
Giulio Pozzi 1; Marco Beleggia 2; Takeshi Kasama 2; Rafal E. Dunin-Borkowski 3
@article{CRPHYS_2014__15_2-3_126_0, author = {Giulio Pozzi and Marco Beleggia and Takeshi Kasama and Rafal E. Dunin-Borkowski}, title = {Interferometric methods for mapping static electric and magnetic fields}, journal = {Comptes Rendus. Physique}, pages = {126--139}, publisher = {Elsevier}, volume = {15}, number = {2-3}, year = {2014}, doi = {10.1016/j.crhy.2014.01.005}, language = {en}, }
TY - JOUR AU - Giulio Pozzi AU - Marco Beleggia AU - Takeshi Kasama AU - Rafal E. Dunin-Borkowski TI - Interferometric methods for mapping static electric and magnetic fields JO - Comptes Rendus. Physique PY - 2014 SP - 126 EP - 139 VL - 15 IS - 2-3 PB - Elsevier DO - 10.1016/j.crhy.2014.01.005 LA - en ID - CRPHYS_2014__15_2-3_126_0 ER -
%0 Journal Article %A Giulio Pozzi %A Marco Beleggia %A Takeshi Kasama %A Rafal E. Dunin-Borkowski %T Interferometric methods for mapping static electric and magnetic fields %J Comptes Rendus. Physique %D 2014 %P 126-139 %V 15 %N 2-3 %I Elsevier %R 10.1016/j.crhy.2014.01.005 %G en %F CRPHYS_2014__15_2-3_126_0
Giulio Pozzi; Marco Beleggia; Takeshi Kasama; Rafal E. Dunin-Borkowski. Interferometric methods for mapping static electric and magnetic fields. Comptes Rendus. Physique, Volume 15 (2014) no. 2-3, pp. 126-139. doi : 10.1016/j.crhy.2014.01.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.01.005/
[1] Twenty forms of electron holography, Ultramicroscopy, Volume 41 (1992), pp. 335-348
[2] Electron Microscopy of Thin Crystals, Krieger, Florida, 1977
[3] The investigation of magnetic domain structures in thin foils by electron microscopy, J. Phys. D, Appl. Phys., Volume 17 (1984), pp. 623-647
[4] Electron holography of long-range electrostatic fields (P.W. Hawkes, ed.), Advances in Imaging and Electron Physics, vol. 122, Elsevier, 2002, pp. 173-249
[5] Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen, Z. Phys., Volume 145 (1956), pp. 377-397
[6] Scalar diffraction theory in electron optics (L. Marton, ed.), Advances in Electronics and Electron Physics, vol. 30, Academic Press, 1971, pp. 139-234
[7] Bipartition d'un faisceau de particules par un biprisme électrostatique, C. R. Hebd. Séances Acad. Sci., Sér. A B, Sci. Math. Sci. Phys., Volume 249 (1959), pp. 662-664
[8] Interpretazione d'esperienze d'interferometria elettronica, G. Fis., Volume 20 (1979), pp. 10-21
[9] Electron-optical analysis of the electrostatic Aharonov–Bohm effect, Ultramicroscopy, Volume 41 (1992), pp. 255-268
[10] Intensity distributions in electron interference phenomena produced by an electrostatic biprism, Opt. Acta: Int. J. Opt., Volume 14 (1967), pp. 147-167
[11] Characterization of JEOL 2100F Lorentz-TEM for low-magnification electron holography and magnetic imaging, Ultramicroscopy, Volume 108 (2008), pp. 625-634
[12] Justification of the model for electron interference produced by an electrostatic biprism, Opt. Acta: Int. J. Opt., Volume 20 (1973), pp. 207-215
[13] On the theory of the contrast in a scanning-electron-microscope image of a p–n junction, Bull. Acad. Sci. U.S.S.R., Phys. Ser., Volume 32 (1968), pp. 1046-1051
[14] On the interpretation of TEM images of p–n junctions, Phys. Status Solidi A, Volume 51 (1979), pp. 383-390
[15] Theoretical model for interpreting TEM images of thinned p–n junctions, Optik, Volume 47 (1977), pp. 205-214
[16] Multislice approach to lens analysis (P.W. Hawkes, ed.), Advances in Imaging and Electron Physics, vol. 93, Elsevier, 1995, pp. 173-218
[17] On the interpretation of TEM images of p–n junctions: a multislice approach, Phys. Status Solidi A, Volume 156 (1996), p. K1-K4
[18] Grundlagen der Elektronenoptik, Springer, Wien, 1952
[19] Elektronenoptische Abbildung auf Grund der Wellenmechanik. I, Ann. Phys., Volume 447 (1953), pp. 240-266
[20] Magnetic phase contrast (U. Valdrè, ed.), Electron Microscopy in Material Science, Academic Press, New York, 1971, pp. 712-757
[21] Computer simulations of electron holographic contour maps of superconducting flux lines, Ultramicroscopy, Volume 41 (1992), pp. 169-179
[22] Electron holography studies of the charge on dislocations in GaN, Phys. Rev. Lett., Volume 87 (2001), p. 205504
[23] Electron holography studies of the charge on dislocations in GaN, Phys. Status Solidi B, Volume 234 (2002), pp. 924-930
[24] Investigation of the charge on threading edge dislocations in GaN by electron holography, J. Electron Microsc., Volume 51 (2002), pp. 105-112
[25] Simulation of electron holographic contour maps of linear charged dislocations, Ultramicroscopy, Volume 57 (1995), pp. 385-390
[26] A new electrostatic phase-shifting effect, Ultramicroscopy, Volume 10 (1982), pp. 247-251
[27] New diffraction experiment on the electrostatic Aharonov–Bohm effect, Phys. Rev. Lett., Volume 54 (1985), pp. 2469-2472
[28] Simulations of electron holograms of long range electrostatic field, Scanning Microsc., Volume 11 (1997), pp. 367-374
[29] Electron holography of long-range electric and magnetic fields, J. Appl. Phys., Volume 69 (1991), pp. 1835-1842
[30] On the interpretation of magnetic and electric fields imaged by low-magnification off-axis electron holography, J. Microsc., Volume 187 (1997), pp. 85-95
[31] Off-axis and inline electron holography: Experimental comparison, Ultramicroscopy, Volume 110 (2010), pp. 472-482
[32] Off-axis and inline electron holography: A quantitative comparison, Ultramicroscopy, Volume 110 (2010), pp. 460-471
[33] Électrostatique, vol. 2, Masson, Paris, 1964
[34] Mapping of microelectrostatic fields by means of electron holography: theoretical and experimental results, Phys. Rev. A, Volume 40 (1989), pp. 3136-3146
[35] Classical Electrodynamics, Wiley, New York, 1999
[36] Phase shift of charged metallic nanoparticles, Ultramicroscopy, Volume 110 (2010), pp. 418-424
[37] Electron holography in the study of the electrostatic fields: the case of charged microtips, Ultramicroscopy, Volume 45 (1992), pp. 77-83
[38] Direct measurement of the charge distribution along a biased carbon nanotube bundle using electron holography, Appl. Phys. Lett., Volume 98 (2011), pp. 243101-243103
[39] Electron holography of field-emitting carbon nanotubes, Phys. Rev. Lett., Volume 88 (2002), p. 056804
[40] A Fourier approach to fields and electron optical phase-shifts calculations, Ultramicroscopy, Volume 96 (2003), pp. 93-103
[41] Theoretical model for studying electrostatic potentials by means of Lorentz microscopy, Optik, Volume 68 (1984), pp. 319-333
[42] Electron holographic observations of the electrostatic field associated with thin reverse-biased p–n junctions, Phys. Rev. Lett., Volume 55 (1985), pp. 2196-2199
[43] Observation of electrostatic fields by electron holography: the case of reverse-biased p–n junctions, Ultramicroscopy, Volume 23 (1987), pp. 29-37
[44] Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Pergamon Press, Oxford, 1969
[45] Diffraction from a half-plane. A new derivation of the Sommerfeld solution, Opt. Commun., Volume 48 (1983), pp. 67-70
[46] A model for the interpretation of holographic and Lorentz images of tilted reverse-biased p–n junctions in a finite specimen, Philos. Mag., B, Volume 80 (2000), pp. 1071-1082
[47] Electron optical phase-shifts by Fourier methods: analytical versus numerical calculations, Ultramicroscopy, Volume 104 (2005), pp. 193-205
[48] Interpretation of electron beam induced charging of oxide layers in a transistor studied using electron holography, J. Phys. Conf. Ser., Volume 209 (2010), p. 012064
[49] Electron microscopy of reverse biased p–n junctions, Micron, Volume 31 (2000), pp. 231-236
[50] Influence of charged oxide layers on TEM imaging of reverse-biased p–n junctions, Phys. Rev. B, Volume 67 (2003), p. 045328
[51] Effects of beam–specimen interaction on the observation of reverse-biased p–n junctions by electron interferometry, Phys. Rev. B, Volume 72 (2005), p. 085312
[52] Finite element simulations of electrostatic dopant potentials in thin semiconductor specimens for electron holography, Ultramicroscopy, Volume 134 (2013), pp. 160-166
[53] Illumination effects in holographic imaging of the electrostatic potential of defects and pn junctions in transmission electron microscopy, Phys. Rev. B, Volume 70 (2004), p. 165313
[54] Computer simulations of electron holographic contour maps of superconducting flux lines II. The case of tilted specimens, Ultramicroscopy, Volume 49 (1993), pp. 87-94
[55] Real-time observation of vortex lattices in a superconductor by electron microscopy, Nature, Volume 360 (1992), pp. 51-53
[56] Electron holography observation of vortex lattices in a superconductor, Phys. Rev. Lett., Volume 70 (1993)
[57] Lorentz microscopy of vortex lattices (flux lines) in niobium, Phys. Rev. B, Volume 49 (1994), pp. 6800-6807
[58] Measurement of London penetration depth from holographic images of superconducting vortices: the influence of specimen thickness, Phys. Rev. B, Volume 57 (1998), pp. 1200-1205
[59] Influence of core misalignment and distortion on the Fresnel and holographic images of superconducting fluxons, Phys. Rev. B, Volume 59 (1999), pp. 1426-1431
[60] On the interpretation of Lorentz and holographic interference images of superconducting fluxons: the influence of the specimen thickness, Ultramicroscopy, Volume 77 (1999), pp. 163-175
[61] Two-dimensional vortices in a stack of thin superconducting films: a model for high-temperature superconducting multilayers, Phys. Rev. B, Volume 43 (1991), pp. 7837-7846
[62] Observation of individual vortices trapped along columnar defects in high-temperature superconductors, Nature, Volume 412 (2001), pp. 620-622
[63] Observation of superconducting fluxons by transmission electron microscopy: A Fourier space approach to calculate the electron optical phase shifts and images, Phys. Rev. B, Volume 63 (2001), p. 054507
[64] On the calculation of the phase shift of superconducting fluxons: from the isolated to the lattice case, Ultramicroscopy, Volume 84 (2000), pp. 171-183
[65] Interpretation of Lorentz microscopy observations of vortices in high-temperature superconductors with columnar defects, Phys. Rev. B, Volume 66 (2002), p. 174518
[66] Direct evidence of the anisotropic structure of vortices interacting with columnar defects in high-temperature superconductors through the analysis of Lorentz images, J. Phys. Soc. Jpn., Volume 71 (2002), pp. 1840-1843
[67] Model of superconducting vortices in layered materials for the interpretation of transmission electron microscopy images, Phys. Rev. B, Volume 70 (2004), p. 184518
[68] Electron-optical phase shift of a Josephson vortex, Phys. Rev. B, Volume 69 (2004), p. 014518
[69] Image simulations of kinked vortices for transmission electron microscopy, Ultramicroscopy, Volume 110 (2010), pp. 1428-1433
[70] Electron optical effects of a Pearl vortex near the film edge, Phys. Rev. B, Volume 76 (2007), p. 054510
[71] Electron holographic interference micrograph of a single magnetic-domain particle, Jpn. J. Appl. Phys., Part 1: Regul. Pap. & Short Notes & Rev. Pap., Volume 34 (1995), pp. 3294-3297
[72] Electron holography of long-range electromagnetic fields: a tutorial (P.W. Hawkes, ed.), Advances in Imaging and Electron Physics, vol. 123, Elsevier, 2002, pp. 207-223
[73] Electron holography image simulation of nanoparticles, J. Comput. Theor. Nanosci., Volume 3 (2006), pp. 362-374
[74] The quantum effects of electromagnetic fluxes, Rev. Mod. Phys., Volume 57 (1985), pp. 339-436
[75] Significance of electromagnetic potentials in the quantum theory, Phys. Rev., Volume 115 (1959), pp. 485-491
[76] Evidence for Aharonov–Bohm effect with magnetic field completely shielded from electron wave, Phys. Rev. Lett., Volume 56 (1986), pp. 792-795
[77] Electron-optical phase shift of magnetic nanoparticles: I. Basic concepts, Philos. Mag., Volume 83 (2003), pp. 1045-1057
[78] On the computation of the demagnetization tensor field for an arbitrary particle shape using a Fourier space approach, J. Magn. Magn. Mater., Volume 263 (2003), p. L1-L9
[79] On the computation of the demagnetization tensor for uniformly magnetized particles of arbitrary shape. Part I: Analytical approach, J. Magn. Magn. Mater., Volume 271 (2004), pp. 9-26
[80] On the computation of the demagnetization tensor for uniformly magnetized particles of arbitrary shape. Part II: Numerical approach, J. Magn. Magn. Mater., Volume 271 (2004), pp. 27-38
[81] Demagnetization factors for elliptic cylinders, J. Phys. D, Appl. Phys., Volume 38 (2005), pp. 3333-3342
[82] Phase diagram for magnetic nano-rings, J. Magn. Magn. Mater., Volume 301 (2006), pp. 131-146
[83] Demagnetization factors of the general ellipsoid: An alternative to the Maxwell approach, Philos. Mag., Volume 86 (2006), pp. 2451-2466
[84] Demagnetization factors for cylindrical shells and related shapes, J. Magn. Magn. Mater., Volume 321 (2009), pp. 1306-1315
[85] Magnetostatics of the uniformly polarized torus, Proc. R. Soc. A, Math. Phys. Eng. Sci., Volume 465 (2009), pp. 3581-3604
[86] General magnetostatic shape–shape interactions, J. Magn. Magn. Mater., Volume 285 (2005), p. L1-L10
[87] General magnetostatic shape–shape interaction forces and torques, J. Magn. Magn. Mater., Volume 321 (2009), p. L45-L51
[88] Magnetostatic interactions and forces between cylindrical permanent magnets, J. Magn. Magn. Mater., Volume 321 (2009), pp. 3758-3763
[89] Electron optical observation of magnetic fields, J. Appl. Phys., Volume 19 (1948), pp. 863-864
[90] Electron optical mapping of electromagnetic fields, J. Appl. Phys., Volume 20 (1949), pp. 1171-1182
[91] The measurement of magnetic microfields, IEEE Trans. Magn., Volume 12 (1976), pp. 34-39
[92] Measurement of electric field distribution using a conventional transmission electron microscope, J. Electron Microsc., Volume 59 (2010), p. S89-S94
[93] Interference electron microscopy of magnetic domains, J. Microsc., Volume 18 (1973), pp. 103-108
[94] Shadow and interference electron microscopy of magnetic domain walls, Phys. Status Solidi A, Volume 49 (1978), p. K103-K107
[95] Quantitative shadow technique for the investigation of magnetic domain wall widths, Appl. Phys. Lett., Volume 88 (2006), p. 152506
[96] Quantitative domain wall width measurement with coherent electrons, J. Magn. Magn. Mater., Volume 310 (2007), pp. 2696-2698
[97] The development of coherent Foucault imaging to investigate magnetic microstructure, J. Microsc., Volume 179 (1995), pp. 119-128
[98] Coherent magnetic imaging by TEM, IEEE Trans. Magn., Volume 30 (1994), pp. 4479-4484
[99] Coherent Foucault imaging: a method for imaging magnetic domain structures in thin films, J. Appl. Phys., Volume 76 (1994), pp. 5349-5355
[100] In-situ magnetising experiments using coherent magnetic imaging in TEM, J. Magn. Magn. Mater., Volume 148 (1995), pp. 232-236
[101] In-situ studies of the properties of micrometre-sized magnetic elements by coherent Foucault imaging, J. Phys. D, Appl. Phys., Volume 29 (1996), p. 1419
[102] Noninterferometric phase determination (P.W. Hawkes, ed.), Advances in Imaging and Electron Physics, vol. 118, 2001, pp. 85-127
[103] Quantitative phase-sensitive imaging in a transmission electron microscope, Ultramicroscopy, Volume 83 (2000), pp. 67-73
[104] Quantitative noninterferometric Lorentz microscopy, J. Appl. Phys., Volume 89 (2001), pp. 7177-7179
[105] Lorentz phase microscopy of magnetic materials, Ultramicroscopy, Volume 98 (2004), pp. 271-281
[106] On the transport of intensity technique for phase retrieval, Ultramicroscopy, Volume 102 (2004), pp. 37-49
[107] Remanent magnetization states and interactions in square arrays of 100-nm cobalt dots measured using transmission electron microscopy, J. Appl. Phys., Volume 98 (2005)
[108] Magnetic structure of individual flux vortices in superconducting MgB2 derived using transmission electron microscopy, Phys. Rev. B, Volume 87 (2013), p. 144515
[109] Electron interferometry and interference electron microscopy, J. Phys. E, Sci. Instrum., Volume 14 (1981), pp. 649-671
[110] Electron Holography, Elsevier Science B.V., 1995
[111] Electron Holography, Springer-Verlag, 1999
[112] Introduction to Electron Holography, Plenum Publishing Corporation, 1999
[113] Electron holography (E. Wolf, ed.), Progress in Optics, vol. 23, Elsevier, 1986, pp. 183-220
[114] R.E. Dunin-Borkowski, T. Kasama, R. Harrison, Electron holography of nanostructured materials, Royal Society of Chemistry, London, 2007, pp. 53–80.
[115] Electron holography of magnetic materials (F.A. Monroy Ramírez, ed.), Holography—Different Fields of Application, InTech, 2011, pp. 53-80
[116] Applications of electron holography, Rev. Mod. Phys., Volume 59 (1987), p. 639
[117] An introduction to off-axis electron holography, Micron, Volume 32 (2001), pp. 167-184
[118] Tutorial on off-axis electron holography, Microsc. Microanal., Volume 8 (2002), pp. 447-466
[119] Electron holography: Applications to materials questions, Annu. Rev. Mater. Res., Volume 37 (2007), pp. 539-588
[120] Electron holography—basics and applications, Rep. Prog. Phys., Volume 71 (2008), p. 016102
[121] Electron tomography and holography in materials science, Nat. Mater., Volume 8 (2009), pp. 271-280
[122] Mapping of microelectric and magnetic fields with double-exposure electron holography, Appl. Phys. Lett., Volume 52 (1988), pp. 176-178
[123] Multiple-beam interference experiments with a holographic electron microscope, Optik, Volume 92 (1993), pp. 168-174
[124] Three-beam electron holography experiments, Proc. 13th Int. Congr. on Electron Microscopy—ICEM 13, Paris, 1994, vol. 1, 1994, pp. 323-324
[125] Direct visualization of electromagnetic microfields by interference of three electron waves, Appl. Phys. Lett., Volume 67 (1995), pp. 1185-1187
[126] Interference of three electron waves by two biprisms and its application to direct visualization of electromagnetic fields in small regions, J. Appl. Phys., Volume 82 (1997), pp. 522-527
[127] Double-biprism electron interferometry, Appl. Phys. Lett., Volume 84 (2004), pp. 3229-3231
[128] Optical system for double-biprism electron holography, J. Electron Microsc., Volume 54 (2005), pp. 19-27
[129] Off-axis electron holography without Fresnel fringes, Ultramicroscopy, Volume 101 (2004), pp. 265-269
[130] Variable interference azimuth angle in double-biprism electron interferometry, Jpn. J. Appl. Phys., Part 2: Letters, Volume 44 (2005), p. L636-L639
[131] Direct observation of electrostatic microfields by four-electron-wave interference using two electron biprisms, J. Electron Microsc., Volume 53 (2004), pp. 577-582
[132] Triple-biprism electron interferometry, J. Appl. Phys., Volume 99 (2006), p. 113502
[133] Twin-electron biprism, J. Electron Microsc., Volume 60 (2011), pp. 353-358
[134] Differential microscopy in off-axis transmission electron microscope holography, Scanning Microsc., Volume 11 (1997), pp. 417-425
[135] Electron differential microscopy using an electron trapezoidal prism, Ultramicroscopy, Volume 75 (1999), pp. 197-202
[136] Observation of magnetic fine structures by electron differential microscopy, Mater. Charact., Volume 42 (1999), pp. 183-192
[137] Split-illumination electron holography, Appl. Phys. Lett., Volume 101 (2012), p. 043101
[138] Eliminating the influence of the perturbed reference wave in electron holography, J. Mod. Opt., Volume 42 (1995), pp. 1171-1178
[139] Through object electron holography, J. Electron Microsc., Volume 48 (1999), pp. 33-34
[140] A new off-axis Fresnel holographic method in transmission electron microscopy: an application on the mapping of ferromagnetic domains. III, Ultramicroscopy, Volume 8 (1982), pp. 403-408
[141] Electron holography available in a non-biprism transmission electron microscope, Ultramicroscopy, Volume 53 (1994), pp. 1-7
[142] Incoherent electron holography, J. Appl. Phys., Volume 77 (1995), pp. 1421-1426
[143] Amplitude-division three-electron-wave interference for observing pure phase objects having low spatial frequency, J. Electron Microsc., Volume 54 (2005), pp. 51-55
[144] A “mixed” type electron interferometer. II, Ultramicroscopy, Volume 7 (1982), pp. 277-286
[145] Realization of a mixed type of interferometry using convergent-beam electron diffraction and an electron biprism, Ultramicroscopy, Volume 50 (1993), pp. 94-100
[146] Interferometry using convergent electron diffracted beams plus an electron biprism (CBED + EBI), Ultramicroscopy, Volume 60 (1995), pp. 153-169
[147] Off-axis holography with a crystal beam splitter, Ultramicroscopy, Volume 77 (1999), pp. 1-11
[148] Energy-filtered electron-diffracted beam holography, Ultramicroscopy, Volume 104 (2005), pp. 261-270
[149] Planar diffracted-beam interferometry/holography, Ultramicroscopy, Volume 108 (2008), pp. 688-697
[150] Diffracted phase and amplitude measurements by energy-filtered convergent-beam holography (CHEF), Ultramicroscopy, Volume 108 (2008), pp. 285-294
[151] The principle of a double crystal electron interferometer, J. Electron Microsc., Volume 50 (2001), pp. 371-376
[152] Electron Tomography, Royal Society of Chemistry (RSC) Publishing, Cambridge, UK, 2007
[153] Three-dimensional reconstruction of electric-potential distribution in electron-holographic interferometry, Appl. Opt., Volume 33 (1994), pp. 829-833
[154] Three-dimensional reconstruction of magnetic vector fields using electron-holographic interferometry, J. Appl. Phys., Volume 75 (1994), pp. 4593-4598
[155] Three-dimensional electrostatic potential of a Si p–n junction revealed using tomographic electron holography, J. Phys. Conf. Ser., Volume 26 (2006), p. 29
[156] High-resolution three-dimensional mapping of semiconductor dopant potentials, Nano Lett., Volume 7 (2007), pp. 2020-2023
[157] Mapping the electrical properties of semiconductor junctions—the electron holographic approach, Scanning, Volume 30 (2008), pp. 299-309
[158] Quantitative electron holographic tomography for the 3D characterisation of semiconductor device structures, Ultramicroscopy, Volume 108 (2008), pp. 1401-1407
[159] Three-dimensional reconstructions of electrostatic potential distributions with 1.5-nm resolution using off-axis electron holography, J. Electron Microsc., Volume 61 (2012), pp. 77-84
[160] Towards automated electron holographic tomography for 3D mapping of electrostatic potentials, Ultramicroscopy, Volume 110 (2010), pp. 390-399
[161] Electron holographic tomography for mapping the three-dimensional distribution of electrostatic potential in III–V semiconductor nanowires, Appl. Phys. Lett., Volume 98 (2011), p. 264103
[162] Three-dimensional magnetic fields of nanoscale elements determined by electron-holographic tomography, Conference Series—Institute of Physics, vol. 168, Institute of Physics, Philadelphia, 1999, pp. 243-246
[163] Electron tomography of electromagnetic fields, potentials and sources, Opt. Commun., Volume 253 (2005), pp. 392-400
[164] Vector field electron tomography of magnetic materials: theoretical development, Ultramicroscopy, Volume 108 (2008), pp. 503-513
[165] Three-dimensional study of the vector potential of magnetic structures, Phys. Rev. Lett., Volume 104 (2010), p. 253901
[166] The quantitative measurement of magnetic moments from phase images of nanoparticles and nanostructures—I. Fundamentals, Ultramicroscopy, Volume 110 (2010), pp. 425-432
[167] Counting elementary charges on nanoparticles by electron holography, Phys. Rev. Lett., Volume 111 (2013), p. 025501
Cited by Sources:
Comments - Policy