Comptes Rendus
Electron microscopy / Microscopie électronique
Interferometric methods for mapping static electric and magnetic fields
Comptes Rendus. Physique, Volume 15 (2014) no. 2-3, pp. 126-139.

The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensity Equation. Among these approaches, image-plane off-axis electron holography in the transmission electron microscope has acquired a prominent role thanks to its quantitative capabilities and broad range of applicability. After a brief overview of the main ideas and methods behind field mapping, we focus on theoretical models that form the basis of the quantitative interpretation of electron holographic data. We review the application of electron holography to a variety of samples (including electric fields associated with p–n junctions in semiconductors, quantized magnetic flux in superconductors and magnetization topographies in nanoparticles and other magnetic materials) and electron-optical geometries (including multiple biprism, amplitude and mixed-type set-ups). We conclude by highlighting the emerging perspectives of (i) three-dimensional field mapping using electron holographic tomography and (ii) the model-independent determination of the locations and magnitudes of field sources (electric charges and magnetic dipoles) directly from electron holographic data.

La cartographie de champs électriques et magnétiques statiques avec une sonde d'électrons à un niveau de résolution et de sensibilité suffisant pour révéler des variations à l'échelle nanométrique requiert l'utilisation de méthodes sensibles à la phase, telles que la technique de l'ombrage, l'imagerie cohérente en mode de Foucault ou l'équation de transport de l'intensité (TIE). Parmi ces différentes approches, l'holographie électronique « hors axe » en microscopie électronique à transmission joue un rôle prépondérant, en raison de son caractère quantitatif et de son vaste domaine d'utilisation. Après une brève revue des principales idées et méthodes sous-jacentes, nous nous attacherons à décrire les modèles théoriques qui constituent le fondement de l'interprétation quantitative des données holographiques. Nous passerons rapidement en revue l'utilisation de l'holographie électronique pour étudier un grand nombre d'échantillons avec leurs champs électriques et magnétiques associés : jonctions pn dans les semi-conducteurs, lignes de flux magnétique quantifié dans les supraconducteurs, topographies du champ magnétique dans et autour de nanoparticules et autres… Les aspects relatifs aux géométries utilisées en optique électronique (doubles biprismes et dispositifs mixtes pour jouer sur la phase et l'amplitude) sont aussi mentionnés. Enfin, nous identifions plusieurs perspectives émergentes de grand intérêt : (i) la cartographie tridimensionnelle de champs en associant tomographie et holographie, (ii) la détermination de la position et de l'intensité de sources de champ (charges électriques et dipôles magnétiques) directement à partir des données holographiques.

Published online:
DOI: 10.1016/j.crhy.2014.01.005
Keywords: Transmission electron microscopy, Electron holography, Field mapping, Electric fields, Magnetic fields
Mot clés : Microscopie électronique en transmission, Holographie électronique, Cartographie de champs, Champs électriques, Champs magnétiques

Giulio Pozzi 1; Marco Beleggia 2; Takeshi Kasama 2; Rafal E. Dunin-Borkowski 3

1 University of Bologna, Department of Physics and Astronomy, viale B. Pichat 6/2, 40127 Bologna, Italy
2 Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
3 Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungzentrum Jülich, 52425 Jülich, Germany
@article{CRPHYS_2014__15_2-3_126_0,
     author = {Giulio Pozzi and Marco Beleggia and Takeshi Kasama and Rafal E. Dunin-Borkowski},
     title = {Interferometric methods for mapping static electric and magnetic fields},
     journal = {Comptes Rendus. Physique},
     pages = {126--139},
     publisher = {Elsevier},
     volume = {15},
     number = {2-3},
     year = {2014},
     doi = {10.1016/j.crhy.2014.01.005},
     language = {en},
}
TY  - JOUR
AU  - Giulio Pozzi
AU  - Marco Beleggia
AU  - Takeshi Kasama
AU  - Rafal E. Dunin-Borkowski
TI  - Interferometric methods for mapping static electric and magnetic fields
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 126
EP  - 139
VL  - 15
IS  - 2-3
PB  - Elsevier
DO  - 10.1016/j.crhy.2014.01.005
LA  - en
ID  - CRPHYS_2014__15_2-3_126_0
ER  - 
%0 Journal Article
%A Giulio Pozzi
%A Marco Beleggia
%A Takeshi Kasama
%A Rafal E. Dunin-Borkowski
%T Interferometric methods for mapping static electric and magnetic fields
%J Comptes Rendus. Physique
%D 2014
%P 126-139
%V 15
%N 2-3
%I Elsevier
%R 10.1016/j.crhy.2014.01.005
%G en
%F CRPHYS_2014__15_2-3_126_0
Giulio Pozzi; Marco Beleggia; Takeshi Kasama; Rafal E. Dunin-Borkowski. Interferometric methods for mapping static electric and magnetic fields. Comptes Rendus. Physique, Volume 15 (2014) no. 2-3, pp. 126-139. doi : 10.1016/j.crhy.2014.01.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.01.005/

[1] J.M. Cowley Twenty forms of electron holography, Ultramicroscopy, Volume 41 (1992), pp. 335-348

[2] P.B. Hirsch; A. Howie; R. Nicholson; D. Pashley; M.J. Whelan Electron Microscopy of Thin Crystals, Krieger, Florida, 1977

[3] J.N. Chapman The investigation of magnetic domain structures in thin foils by electron microscopy, J. Phys. D, Appl. Phys., Volume 17 (1984), pp. 623-647

[4] G. Matteucci; G.F. Missiroli; G. Pozzi Electron holography of long-range electrostatic fields (P.W. Hawkes, ed.), Advances in Imaging and Electron Physics, vol. 122, Elsevier, 2002, pp. 173-249

[5] G. Möllenstedt; H. Düker Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen, Z. Phys., Volume 145 (1956), pp. 377-397

[6] J. Komrska Scalar diffraction theory in electron optics (L. Marton, ed.), Advances in Electronics and Electron Physics, vol. 30, Academic Press, 1971, pp. 139-234

[7] A. Septier Bipartition d'un faisceau de particules par un biprisme électrostatique, C. R. Hebd. Séances Acad. Sci., Sér. A B, Sci. Math. Sci. Phys., Volume 249 (1959), pp. 662-664

[8] G. Matteucci; G. Pozzi; M. Vanzi Interpretazione d'esperienze d'interferometria elettronica, G. Fis., Volume 20 (1979), pp. 10-21

[9] G. Matteucci; F.F. Medina; G. Pozzi Electron-optical analysis of the electrostatic Aharonov–Bohm effect, Ultramicroscopy, Volume 41 (1992), pp. 255-268

[10] J. Komrska; V. Drahoš; A. Delong Intensity distributions in electron interference phenomena produced by an electrostatic biprism, Opt. Acta: Int. J. Opt., Volume 14 (1967), pp. 147-167

[11] M.A. Schofield; M. Beleggia; Y. Zhu; G. Pozzi Characterization of JEOL 2100F Lorentz-TEM for low-magnification electron holography and magnetic imaging, Ultramicroscopy, Volume 108 (2008), pp. 625-634

[12] J. Komrska; B. Vlachová Justification of the model for electron interference produced by an electrostatic biprism, Opt. Acta: Int. J. Opt., Volume 20 (1973), pp. 207-215

[13] G.V. Spivak; G.V. Saparin; N.N. Sedov; L.F. Komolova On the theory of the contrast in a scanning-electron-microscope image of a p–n junction, Bull. Acad. Sci. U.S.S.R., Phys. Ser., Volume 32 (1968), pp. 1046-1051

[14] G. Lo Vecchio; G. Morandi On the interpretation of TEM images of p–n junctions, Phys. Status Solidi A, Volume 51 (1979), pp. 383-390

[15] C. Capiluppi; P. Merli; G. Pozzi Theoretical model for interpreting TEM images of thinned p–n junctions, Optik, Volume 47 (1977), pp. 205-214

[16] G. Pozzi Multislice approach to lens analysis (P.W. Hawkes, ed.), Advances in Imaging and Electron Physics, vol. 93, Elsevier, 1995, pp. 173-218

[17] G. Pozzi On the interpretation of TEM images of p–n junctions: a multislice approach, Phys. Status Solidi A, Volume 156 (1996), p. K1-K4

[18] W. Glaser Grundlagen der Elektronenoptik, Springer, Wien, 1952

[19] W. Glaser; P. Schiske Elektronenoptische Abbildung auf Grund der Wellenmechanik. I, Ann. Phys., Volume 447 (1953), pp. 240-266

[20] D. Wohlleben Magnetic phase contrast (U. Valdrè, ed.), Electron Microscopy in Material Science, Academic Press, New York, 1971, pp. 712-757

[21] A. Migliori; G. Pozzi Computer simulations of electron holographic contour maps of superconducting flux lines, Ultramicroscopy, Volume 41 (1992), pp. 169-179

[22] D. Cherns; C.G. Jiao Electron holography studies of the charge on dislocations in GaN, Phys. Rev. Lett., Volume 87 (2001), p. 205504

[23] D. Cherns; C.G. Jiao; H. Mokhtari; J. Cai; F.A. Ponce Electron holography studies of the charge on dislocations in GaN, Phys. Status Solidi B, Volume 234 (2002), pp. 924-930

[24] C. Jiao; D. Cherns Investigation of the charge on threading edge dislocations in GaN by electron holography, J. Electron Microsc., Volume 51 (2002), pp. 105-112

[25] D. Cavalcoli; G. Matteucci; M. Muccini Simulation of electron holographic contour maps of linear charged dislocations, Ultramicroscopy, Volume 57 (1995), pp. 385-390

[26] G. Matteucci; G.F. Missiroli; G. Pozzi A new electrostatic phase-shifting effect, Ultramicroscopy, Volume 10 (1982), pp. 247-251

[27] G. Matteucci; G. Pozzi New diffraction experiment on the electrostatic Aharonov–Bohm effect, Phys. Rev. Lett., Volume 54 (1985), pp. 2469-2472

[28] G. Matteucci; G. Missiroli; G. Pozzi Simulations of electron holograms of long range electrostatic field, Scanning Microsc., Volume 11 (1997), pp. 367-374

[29] G. Matteucci; G. Missiroli; E. Nichelatti; A. Migliori; M. Vanzi; G. Pozzi Electron holography of long-range electric and magnetic fields, J. Appl. Phys., Volume 69 (1991), pp. 1835-1842

[30] B. Frost; T. Jenkins On the interpretation of magnetic and electric fields imaged by low-magnification off-axis electron holography, J. Microsc., Volume 187 (1997), pp. 85-95

[31] T. Latychevskaia; P. Formanek; C.T. Koch; A. Lubk Off-axis and inline electron holography: Experimental comparison, Ultramicroscopy, Volume 110 (2010), pp. 472-482

[32] C.T. Koch; A. Lubk Off-axis and inline electron holography: A quantitative comparison, Ultramicroscopy, Volume 110 (2010), pp. 460-471

[33] E. Durand Électrostatique, vol. 2, Masson, Paris, 1964

[34] J.W. Chen; G. Matteucci; A. Migliori; G.F. Missiroli; E. Nichelatti; G. Pozzi; M. Vanzi Mapping of microelectrostatic fields by means of electron holography: theoretical and experimental results, Phys. Rev. A, Volume 40 (1989), pp. 3136-3146

[35] J.D. Jackson Classical Electrodynamics, Wiley, New York, 1999

[36] M. Beleggia; G. Pozzi Phase shift of charged metallic nanoparticles, Ultramicroscopy, Volume 110 (2010), pp. 418-424

[37] G. Matteucci; G.F. Missiroli; M. Muccini; G. Pozzi Electron holography in the study of the electrostatic fields: the case of charged microtips, Ultramicroscopy, Volume 45 (1992), pp. 77-83

[38] M. Beleggia; T. Kasama; R.E. Dunin-Borkowski; S. Hofmann; G. Pozzi Direct measurement of the charge distribution along a biased carbon nanotube bundle using electron holography, Appl. Phys. Lett., Volume 98 (2011), pp. 243101-243103

[39] J. Cumings; A. Zettl; M.R. McCartney; J.C.H. Spence Electron holography of field-emitting carbon nanotubes, Phys. Rev. Lett., Volume 88 (2002), p. 056804

[40] M. Beleggia; P.F. Fazzini; G. Pozzi A Fourier approach to fields and electron optical phase-shifts calculations, Ultramicroscopy, Volume 96 (2003), pp. 93-103

[41] M. Vanzi Theoretical model for studying electrostatic potentials by means of Lorentz microscopy, Optik, Volume 68 (1984), pp. 319-333

[42] S. Frabboni; G. Matteucci; G. Pozzi; M. Vanzi Electron holographic observations of the electrostatic field associated with thin reverse-biased p–n junctions, Phys. Rev. Lett., Volume 55 (1985), pp. 2196-2199

[43] S. Frabboni; G. Matteucci; G. Pozzi Observation of electrostatic fields by electron holography: the case of reverse-biased p–n junctions, Ultramicroscopy, Volume 23 (1987), pp. 29-37

[44] M. Born; E. Wolf Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Pergamon Press, Oxford, 1969

[45] F. Gori Diffraction from a half-plane. A new derivation of the Sommerfeld solution, Opt. Commun., Volume 48 (1983), pp. 67-70

[46] M. Beleggia; R. Capelli; G. Pozzi A model for the interpretation of holographic and Lorentz images of tilted reverse-biased p–n junctions in a finite specimen, Philos. Mag., B, Volume 80 (2000), pp. 1071-1082

[47] P.F. Fazzini; G. Pozzi; M. Beleggia Electron optical phase-shifts by Fourier methods: analytical versus numerical calculations, Ultramicroscopy, Volume 104 (2005), pp. 193-205

[48] F. Ubaldi; G. Pozzi; T. Kasama; M. McCartney; S. Newcomb; R.E. Dunin-Borkowski Interpretation of electron beam induced charging of oxide layers in a transistor studied using electron holography, J. Phys. Conf. Ser., Volume 209 (2010), p. 012064

[49] M. Beleggia; D. Cristofori; P.G. Merli; G. Pozzi Electron microscopy of reverse biased p–n junctions, Micron, Volume 31 (2000), pp. 231-236

[50] M. Beleggia; P.F. Fazzini; P.G. Merli; G. Pozzi Influence of charged oxide layers on TEM imaging of reverse-biased p–n junctions, Phys. Rev. B, Volume 67 (2003), p. 045328

[51] P.F. Fazzini; P.G. Merli; G. Pozzi; F. Ubaldi Effects of beam–specimen interaction on the observation of reverse-biased p–n junctions by electron interferometry, Phys. Rev. B, Volume 72 (2005), p. 085312

[52] P.K. Somodi; A.C. Twitchett-Harrison; P.A. Midgley; B.E. Kardinal; C.H.W. Barnes; R.E. Dunin-Borkowski Finite element simulations of electrostatic dopant potentials in thin semiconductor specimens for electron holography, Ultramicroscopy, Volume 134 (2013), pp. 160-166

[53] L. Houben; M. Luysberg; T. Brammer Illumination effects in holographic imaging of the electrostatic potential of defects and pn junctions in transmission electron microscopy, Phys. Rev. B, Volume 70 (2004), p. 165313

[54] A. Migliori; G. Pozzi; A. Tonomura Computer simulations of electron holographic contour maps of superconducting flux lines II. The case of tilted specimens, Ultramicroscopy, Volume 49 (1993), pp. 87-94

[55] K. Harada; T. Matsuda; J. Bonevich; M. Igarashi; S. Kondo; G. Pozzi; U. Kawabe; A. Tonomura Real-time observation of vortex lattices in a superconductor by electron microscopy, Nature, Volume 360 (1992), pp. 51-53

[56] J.E. Bonevich; K. Harada; T. Matsuda; H. Kasai; T. Yoshida; G. Pozzi; A. Tonomura Electron holography observation of vortex lattices in a superconductor, Phys. Rev. Lett., Volume 70 (1993)

[57] J.E. Bonevich; K. Harada; H. Kasai; T. Matsuda; T. Yoshida; G. Pozzi; A. Tonomura Lorentz microscopy of vortex lattices (flux lines) in niobium, Phys. Rev. B, Volume 49 (1994), pp. 6800-6807

[58] J. Bonevich; D. Capacci; K. Harada; H. Kasai; T. Matsuda; R. Patti; G. Pozzi; A. Tonomura Measurement of London penetration depth from holographic images of superconducting vortices: the influence of specimen thickness, Phys. Rev. B, Volume 57 (1998), pp. 1200-1205

[59] S. Fanesi; G. Pozzi; J.E. Bonevich; O. Kamimura; H. Kasai; K. Harada; T. Matsuda; A. Tonomura Influence of core misalignment and distortion on the Fresnel and holographic images of superconducting fluxons, Phys. Rev. B, Volume 59 (1999), pp. 1426-1431

[60] R. Patti; G. Pozzi On the interpretation of Lorentz and holographic interference images of superconducting fluxons: the influence of the specimen thickness, Ultramicroscopy, Volume 77 (1999), pp. 163-175

[61] J.R. Clem Two-dimensional vortices in a stack of thin superconducting films: a model for high-temperature superconducting multilayers, Phys. Rev. B, Volume 43 (1991), pp. 7837-7846

[62] A. Tonomura; H. Kasai; O. Kamimura; T. Matsuda; K. Harada; Y. Nakayama; J. Shimoyama; K. Kishio; T. Hanaguri; K. Kitazawa; M. Sasase; S. Okayasu Observation of individual vortices trapped along columnar defects in high-temperature superconductors, Nature, Volume 412 (2001), pp. 620-622

[63] M. Beleggia; G. Pozzi Observation of superconducting fluxons by transmission electron microscopy: A Fourier space approach to calculate the electron optical phase shifts and images, Phys. Rev. B, Volume 63 (2001), p. 054507

[64] M. Beleggia; G. Pozzi On the calculation of the phase shift of superconducting fluxons: from the isolated to the lattice case, Ultramicroscopy, Volume 84 (2000), pp. 171-183

[65] M. Beleggia; G. Pozzi; J. Masuko; N. Osakabe; K. Harada; T. Yoshida; O. Kamimura; H. Kasai; T. Matsuda; A. Tonomura Interpretation of Lorentz microscopy observations of vortices in high-temperature superconductors with columnar defects, Phys. Rev. B, Volume 66 (2002), p. 174518

[66] O. Kamimura; H. Kasai; T. Akashi; T. Matsuda; K. Harada; J. Masuko; T. Yoshida; N. Osakabe; A. Tonomura; M. Beleggia; G. Pozzi; J. Shimoyama; K. Kishio; T. Hanaguri; K. Kitazawa; M. Sasase; S. Okayasu Direct evidence of the anisotropic structure of vortices interacting with columnar defects in high-temperature superconductors through the analysis of Lorentz images, J. Phys. Soc. Jpn., Volume 71 (2002), pp. 1840-1843

[67] M. Beleggia; G. Pozzi; A. Tonomura; H. Kasai; T. Matsuda; K. Harada; T. Akashi; T. Masui; S. Tajima Model of superconducting vortices in layered materials for the interpretation of transmission electron microscopy images, Phys. Rev. B, Volume 70 (2004), p. 184518

[68] M. Beleggia Electron-optical phase shift of a Josephson vortex, Phys. Rev. B, Volume 69 (2004), p. 014518

[69] M. Beleggia; G. Pozzi; A. Tonomura Image simulations of kinked vortices for transmission electron microscopy, Ultramicroscopy, Volume 110 (2010), pp. 1428-1433

[70] G. Pozzi Electron optical effects of a Pearl vortex near the film edge, Phys. Rev. B, Volume 76 (2007), p. 054510

[71] T. Hirayama; N. Osakabe; Q. Ru; T. Tanji; A. Tonomura Electron holographic interference micrograph of a single magnetic-domain particle, Jpn. J. Appl. Phys., Part 1: Regul. Pap. & Short Notes & Rev. Pap., Volume 34 (1995), pp. 3294-3297

[72] G. Pozzi Electron holography of long-range electromagnetic fields: a tutorial (P.W. Hawkes, ed.), Advances in Imaging and Electron Physics, vol. 123, Elsevier, 2002, pp. 207-223

[73] K. Keimpema; H. De Raedt; J. De Hosson Electron holography image simulation of nanoparticles, J. Comput. Theor. Nanosci., Volume 3 (2006), pp. 362-374

[74] S. Olariu; I.I. Popescu The quantum effects of electromagnetic fluxes, Rev. Mod. Phys., Volume 57 (1985), pp. 339-436

[75] Y. Aharonov; D. Bohm Significance of electromagnetic potentials in the quantum theory, Phys. Rev., Volume 115 (1959), pp. 485-491

[76] A. Tonomura; N. Osakabe; T. Matsuda; T. Kawasaki; J. Endo; S. Yano; H. Yamada Evidence for Aharonov–Bohm effect with magnetic field completely shielded from electron wave, Phys. Rev. Lett., Volume 56 (1986), pp. 792-795

[77] M. Beleggia; Y. Zhu Electron-optical phase shift of magnetic nanoparticles: I. Basic concepts, Philos. Mag., Volume 83 (2003), pp. 1045-1057

[78] M. Beleggia; M. De Graef On the computation of the demagnetization tensor field for an arbitrary particle shape using a Fourier space approach, J. Magn. Magn. Mater., Volume 263 (2003), p. L1-L9

[79] S. Tandon; M. Beleggia; Y. Zhu; M. De Graef On the computation of the demagnetization tensor for uniformly magnetized particles of arbitrary shape. Part I: Analytical approach, J. Magn. Magn. Mater., Volume 271 (2004), pp. 9-26

[80] S. Tandon; M. Beleggia; Y. Zhu; M. De Graef On the computation of the demagnetization tensor for uniformly magnetized particles of arbitrary shape. Part II: Numerical approach, J. Magn. Magn. Mater., Volume 271 (2004), pp. 27-38

[81] M. Beleggia; M. De Graef; Y.T. Millev; D.A. Goode; G. Rowlands Demagnetization factors for elliptic cylinders, J. Phys. D, Appl. Phys., Volume 38 (2005), pp. 3333-3342

[82] M. Beleggia; J.W. Lau; M.A. Schofield; Y. Zhu; S. Tandon; M. De Graef Phase diagram for magnetic nano-rings, J. Magn. Magn. Mater., Volume 301 (2006), pp. 131-146

[83] M. Beleggia; M. De Graef; Y. Millev Demagnetization factors of the general ellipsoid: An alternative to the Maxwell approach, Philos. Mag., Volume 86 (2006), pp. 2451-2466

[84] M. Beleggia; D. Vokoun; M. De Graef Demagnetization factors for cylindrical shells and related shapes, J. Magn. Magn. Mater., Volume 321 (2009), pp. 1306-1315

[85] M. Beleggia; M. De Graef; Y.T. Millev Magnetostatics of the uniformly polarized torus, Proc. R. Soc. A, Math. Phys. Eng. Sci., Volume 465 (2009), pp. 3581-3604

[86] M. Beleggia; M. De Graef General magnetostatic shape–shape interactions, J. Magn. Magn. Mater., Volume 285 (2005), p. L1-L10

[87] M. De Graef; M. Beleggia General magnetostatic shape–shape interaction forces and torques, J. Magn. Magn. Mater., Volume 321 (2009), p. L45-L51

[88] D. Vokoun; M. Beleggia; L. Heller; P. Šittner Magnetostatic interactions and forces between cylindrical permanent magnets, J. Magn. Magn. Mater., Volume 321 (2009), pp. 3758-3763

[89] L. Marton Electron optical observation of magnetic fields, J. Appl. Phys., Volume 19 (1948), pp. 863-864

[90] L. Marton; S. Lachenbruch Electron optical mapping of electromagnetic fields, J. Appl. Phys., Volume 20 (1949), pp. 1171-1182

[91] R. Wade The measurement of magnetic microfields, IEEE Trans. Magn., Volume 12 (1976), pp. 34-39

[92] K. Sasaki; H. Mori; N. Tanaka; H. Murata; C. Morita; H. Shimoyama; K. Kuroda Measurement of electric field distribution using a conventional transmission electron microscope, J. Electron Microsc., Volume 59 (2010), p. S89-S94

[93] G. Pozzi; G. Missiroli Interference electron microscopy of magnetic domains, J. Microsc., Volume 18 (1973), pp. 103-108

[94] S. Martelli; G. Matteucci; M.V. Antisari Shadow and interference electron microscopy of magnetic domain walls, Phys. Status Solidi A, Volume 49 (1978), p. K103-K107

[95] G. Pozzi; M. Beleggia; M. Schofield; Y. Zhu Quantitative shadow technique for the investigation of magnetic domain wall widths, Appl. Phys. Lett., Volume 88 (2006), p. 152506

[96] M. Beleggia; M. Schofield; Y. Zhu; G. Pozzi Quantitative domain wall width measurement with coherent electrons, J. Magn. Magn. Mater., Volume 310 (2007), pp. 2696-2698

[97] A.B. Johnston; J.N. Chapman The development of coherent Foucault imaging to investigate magnetic microstructure, J. Microsc., Volume 179 (1995), pp. 119-128

[98] J.N. Chapman; A.B. Johnston; L.J. Heyderman; S. McVitie; W.A.P. Nicholson; B. Bormans Coherent magnetic imaging by TEM, IEEE Trans. Magn., Volume 30 (1994), pp. 4479-4484

[99] J.N. Chapman; A.B. Johnston; L.J. Heyderman Coherent Foucault imaging: a method for imaging magnetic domain structures in thin films, J. Appl. Phys., Volume 76 (1994), pp. 5349-5355

[100] S. McVitie; J.N. Chapman; L. Zhou; L.J. Heyderman; W.A.P. Nicholson In-situ magnetising experiments using coherent magnetic imaging in TEM, J. Magn. Magn. Mater., Volume 148 (1995), pp. 232-236

[101] A.B. Johnston; J.N. Chapman; B. Khamsehpour; C.D.W. Wilkinson In-situ studies of the properties of micrometre-sized magnetic elements by coherent Foucault imaging, J. Phys. D, Appl. Phys., Volume 29 (1996), p. 1419

[102] D. Paganin; K.A. Nugent Noninterferometric phase determination (P.W. Hawkes, ed.), Advances in Imaging and Electron Physics, vol. 118, 2001, pp. 85-127

[103] S. Bajt; A. Barty; K. Nugent; M. McCartney; M. Wall; D. Paganin Quantitative phase-sensitive imaging in a transmission electron microscope, Ultramicroscopy, Volume 83 (2000), pp. 67-73

[104] M. De Graef; Y. Zhu Quantitative noninterferometric Lorentz microscopy, J. Appl. Phys., Volume 89 (2001), pp. 7177-7179

[105] V.V. Volkov; Y. Zhu Lorentz phase microscopy of magnetic materials, Ultramicroscopy, Volume 98 (2004), pp. 271-281

[106] M. Beleggia; M.A. Schofield; V.V. Volkov; Y. Zhu On the transport of intensity technique for phase retrieval, Ultramicroscopy, Volume 102 (2004), pp. 37-49

[107] T.J. Bromwich; A. Kohn; A.K. Petford-Long; T. Kasama; R.E. Dunin-Borkowski; S.B. Newcomb; C.A. Ross Remanent magnetization states and interactions in square arrays of 100-nm cobalt dots measured using transmission electron microscopy, J. Appl. Phys., Volume 98 (2005)

[108] J.C. Loudon; C.J. Bowell; N.D. Zhigadlo; J. Karpinski; P.A. Midgley Magnetic structure of individual flux vortices in superconducting MgB2 derived using transmission electron microscopy, Phys. Rev. B, Volume 87 (2013), p. 144515

[109] G.F. Missiroli; G. Pozzi; U. Valdrè Electron interferometry and interference electron microscopy, J. Phys. E, Sci. Instrum., Volume 14 (1981), pp. 649-671

[110] A. Tonomura; L. Allard; G. Pozzi; D. Joy; Y. Ono Electron Holography, Elsevier Science B.V., 1995

[111] A. Tonomura Electron Holography, Springer-Verlag, 1999

[112] E. Völkl; L.F. Allard; D.C. Joy Introduction to Electron Holography, Plenum Publishing Corporation, 1999

[113] A. Tonomura Electron holography (E. Wolf, ed.), Progress in Optics, vol. 23, Elsevier, 1986, pp. 183-220

[114] R.E. Dunin-Borkowski, T. Kasama, R. Harrison, Electron holography of nanostructured materials, Royal Society of Chemistry, London, 2007, pp. 53–80.

[115] T. Kasama; R.E. Dunin-Borkowski; M. Beleggia Electron holography of magnetic materials (F.A. Monroy Ramírez, ed.), Holography—Different Fields of Application, InTech, 2011, pp. 53-80

[116] A. Tonomura Applications of electron holography, Rev. Mod. Phys., Volume 59 (1987), p. 639

[117] P. Midgley An introduction to off-axis electron holography, Micron, Volume 32 (2001), pp. 167-184

[118] M. Lehmann; H. Lichte Tutorial on off-axis electron holography, Microsc. Microanal., Volume 8 (2002), pp. 447-466

[119] H. Lichte; P. Formanek; A. Lenk; M. Linck; C. Matzeck; M. Lehmann; P. Simon Electron holography: Applications to materials questions, Annu. Rev. Mater. Res., Volume 37 (2007), pp. 539-588

[120] H. Lichte; M. Lehmann Electron holography—basics and applications, Rep. Prog. Phys., Volume 71 (2008), p. 016102

[121] P.A. Midgley; R.E. Dunin-Borkowski Electron tomography and holography in materials science, Nat. Mater., Volume 8 (2009), pp. 271-280

[122] G. Matteucci; G. Missiroli; J. Chen; G. Pozzi Mapping of microelectric and magnetic fields with double-exposure electron holography, Appl. Phys. Lett., Volume 52 (1988), pp. 176-178

[123] T. Kawasaki; G. Missiroli; G. Pozzi; A. Tonomura Multiple-beam interference experiments with a holographic electron microscope, Optik, Volume 92 (1993), pp. 168-174

[124] T. Kawasaki; G. Pozzi; A. Tonomura Three-beam electron holography experiments, Proc. 13th Int. Congr. on Electron Microscopy—ICEM 13, Paris, 1994, vol. 1, 1994, pp. 323-324

[125] T. Hirayama; T. Tanji; A. Tonomura Direct visualization of electromagnetic microfields by interference of three electron waves, Appl. Phys. Lett., Volume 67 (1995), pp. 1185-1187

[126] T. Hirayama; G. Lai; T. Tanji; N. Tanaka; A. Tonomura Interference of three electron waves by two biprisms and its application to direct visualization of electromagnetic fields in small regions, J. Appl. Phys., Volume 82 (1997), pp. 522-527

[127] K. Harada; A. Tonomura; Y. Togawa; T. Akashi; T. Matsuda Double-biprism electron interferometry, Appl. Phys. Lett., Volume 84 (2004), pp. 3229-3231

[128] K. Harada; T. Akashi; Y. Togawa; T. Matsuda; A. Tonomura Optical system for double-biprism electron holography, J. Electron Microsc., Volume 54 (2005), pp. 19-27

[129] K. Yamamoto; T. Hirayama; T. Tanji Off-axis electron holography without Fresnel fringes, Ultramicroscopy, Volume 101 (2004), pp. 265-269

[130] K. Harada; T. Akashi; Y. Togawa; T. Matsuda; A. Tonomura Variable interference azimuth angle in double-biprism electron interferometry, Jpn. J. Appl. Phys., Part 2: Letters, Volume 44 (2005), p. L636-L639

[131] K. Miyashita; K. Yamamoto; T. Hirayama; T. Tanji Direct observation of electrostatic microfields by four-electron-wave interference using two electron biprisms, J. Electron Microsc., Volume 53 (2004), pp. 577-582

[132] K. Harada; T. Matsuda; A. Tonomura; T. Akashi; Y. Togawa Triple-biprism electron interferometry, J. Appl. Phys., Volume 99 (2006), p. 113502

[133] M. Ikeda; A. Sugawara; K. Harada Twin-electron biprism, J. Electron Microsc., Volume 60 (2011), pp. 353-358

[134] T. Tanji; T. Hirayama Differential microscopy in off-axis transmission electron microscope holography, Scanning Microsc., Volume 11 (1997), pp. 417-425

[135] T. Tanji; S. Manabe; K. Yamamoto; T. Hirayama Electron differential microscopy using an electron trapezoidal prism, Ultramicroscopy, Volume 75 (1999), pp. 197-202

[136] T. Tanji; S. Manabe; K. Yamamoto; T. Hirayama Observation of magnetic fine structures by electron differential microscopy, Mater. Charact., Volume 42 (1999), pp. 183-192

[137] T. Tanigaki; Y. Inada; S. Aizawa; T. Suzuki; H.S. Park; T. Matsuda; A. Taniyama; D. Shindo; A. Tonomura Split-illumination electron holography, Appl. Phys. Lett., Volume 101 (2012), p. 043101

[138] L. Kou; J. Chen Eliminating the influence of the perturbed reference wave in electron holography, J. Mod. Opt., Volume 42 (1995), pp. 1171-1178

[139] D. Van Dyck Through object electron holography, J. Electron Microsc., Volume 48 (1999), pp. 33-34

[140] G. Matteucci; G.F. Missiroli; G. Pozzi A new off-axis Fresnel holographic method in transmission electron microscopy: an application on the mapping of ferromagnetic domains. III, Ultramicroscopy, Volume 8 (1982), pp. 403-408

[141] Q. Ru; N. Osakabe; J. Endo; A. Tonomura Electron holography available in a non-biprism transmission electron microscope, Ultramicroscopy, Volume 53 (1994), pp. 1-7

[142] Q. Ru Incoherent electron holography, J. Appl. Phys., Volume 77 (1995), pp. 1421-1426

[143] T. Hirayama; K. Yamamoto; K. Miyashita; T. Saito Amplitude-division three-electron-wave interference for observing pure phase objects having low spatial frequency, J. Electron Microsc., Volume 54 (2005), pp. 51-55

[144] G. Matteucci; G.F. Missiroli; G. Pozzi A “mixed” type electron interferometer. II, Ultramicroscopy, Volume 7 (1982), pp. 277-286

[145] R.A. Herring; G. Pozzi; T. Tanji; A. Tonomura Realization of a mixed type of interferometry using convergent-beam electron diffraction and an electron biprism, Ultramicroscopy, Volume 50 (1993), pp. 94-100

[146] R.A. Herring; G. Pozzi; T. Tanji; A. Tonomura Interferometry using convergent electron diffracted beams plus an electron biprism (CBED + EBI), Ultramicroscopy, Volume 60 (1995), pp. 153-169

[147] B.M. Mertens; M.H.F. Overwijk; P. Kruit Off-axis holography with a crystal beam splitter, Ultramicroscopy, Volume 77 (1999), pp. 1-11

[148] R.A. Herring Energy-filtered electron-diffracted beam holography, Ultramicroscopy, Volume 104 (2005), pp. 261-270

[149] R.A. Herring Planar diffracted-beam interferometry/holography, Ultramicroscopy, Volume 108 (2008), pp. 688-697

[150] F. Houdellier; M.J. Hÿtch Diffracted phase and amplitude measurements by energy-filtered convergent-beam holography (CHEF), Ultramicroscopy, Volume 108 (2008), pp. 285-294

[151] F. Zhou The principle of a double crystal electron interferometer, J. Electron Microsc., Volume 50 (2001), pp. 371-376

[152] M. Weyland; P. Midgley Electron Tomography, Royal Society of Chemistry (RSC) Publishing, Cambridge, UK, 2007

[153] G. Lai; T. Hirayama; K. Ishizuka; T. Tanji; A. Tonomura Three-dimensional reconstruction of electric-potential distribution in electron-holographic interferometry, Appl. Opt., Volume 33 (1994), pp. 829-833

[154] G. Lai; T. Hirayama; A. Fukuhara; K. Ishizuka; T. Tanji; A. Tonomura Three-dimensional reconstruction of magnetic vector fields using electron-holographic interferometry, J. Appl. Phys., Volume 75 (1994), pp. 4593-4598

[155] A. Twitchett; T. Yates; R. Dunin-Borkowski; S. Newcomb; P. Midgley Three-dimensional electrostatic potential of a Si p–n junction revealed using tomographic electron holography, J. Phys. Conf. Ser., Volume 26 (2006), p. 29

[156] A.C. Twitchett-Harrison; T.J. Yates; S.B. Newcomb; R.E. Dunin-Borkowski; P.A. Midgley High-resolution three-dimensional mapping of semiconductor dopant potentials, Nano Lett., Volume 7 (2007), pp. 2020-2023

[157] A.C. Twitchett-Harrison; R.E. Dunin-Borkowski; P.A. Midgley Mapping the electrical properties of semiconductor junctions—the electron holographic approach, Scanning, Volume 30 (2008), pp. 299-309

[158] A.C. Twitchett-Harrison; T.J.V. Yates; R.E. Dunin-Borkowski; P.A. Midgley Quantitative electron holographic tomography for the 3D characterisation of semiconductor device structures, Ultramicroscopy, Volume 108 (2008), pp. 1401-1407

[159] T. Tanigaki; S. Aizawa; T. Suzuki; A. Tonomura Three-dimensional reconstructions of electrostatic potential distributions with 1.5-nm resolution using off-axis electron holography, J. Electron Microsc., Volume 61 (2012), pp. 77-84

[160] D. Wolf; A. Lubk; H. Lichte; H. Friedrich Towards automated electron holographic tomography for 3D mapping of electrostatic potentials, Ultramicroscopy, Volume 110 (2010), pp. 390-399

[161] D. Wolf; H. Lichte; G. Pozzi; P. Prete; N. Lovergine Electron holographic tomography for mapping the three-dimensional distribution of electrostatic potential in III–V semiconductor nanowires, Appl. Phys. Lett., Volume 98 (2011), p. 264103

[162] V. Stolojan; R. Dunin-Borkowski; M. Weyland; P. Midgley Three-dimensional magnetic fields of nanoscale elements determined by electron-holographic tomography, Conference Series—Institute of Physics, vol. 168, Institute of Physics, Philadelphia, 1999, pp. 243-246

[163] S.J. Lade; D. Paganin; M.J. Morgan Electron tomography of electromagnetic fields, potentials and sources, Opt. Commun., Volume 253 (2005), pp. 392-400

[164] C. Phatak; M. Beleggia; M. De Graef Vector field electron tomography of magnetic materials: theoretical development, Ultramicroscopy, Volume 108 (2008), pp. 503-513

[165] C. Phatak; A.K. Petford-Long; M. De Graef Three-dimensional study of the vector potential of magnetic structures, Phys. Rev. Lett., Volume 104 (2010), p. 253901

[166] M. Beleggia; T. Kasama; R.E. Dunin-Borkowski The quantitative measurement of magnetic moments from phase images of nanoparticles and nanostructures—I. Fundamentals, Ultramicroscopy, Volume 110 (2010), pp. 425-432

[167] C. Gatel; A. Lubk; G. Pozzi; E. Snoeck; M.J. Hÿtch Counting elementary charges on nanoparticles by electron holography, Phys. Rev. Lett., Volume 111 (2013), p. 025501

Cited by Sources:

Comments - Policy