Comptes Rendus
Electron microscopy / Microscopie électronique
Seeing and measuring with electrons: Transmission electron microscopy today and tomorrow – An introduction
[Voir et mesurer avec un faisceau d'électrons : La microscopie électronique à transmission aujourd'hui et demain – Une introduction]
Comptes Rendus. Physique, Volume 15 (2014) no. 2-3, pp. 101-109.

Ce dossier des Comptes rendus Physique est consacré à une revue des développements méthodologiques et technologiques les plus récents en microscopie électronique, et qui offrent en 2014 à cette génération d'instruments des possibilités tout à fait uniques pour explorer la matière condensée à l'échelle atomique. Ce texte d'introduction a pour but de résumer, pour le lecteur potentiel des chapitres qui suivent, une information de base. Il rappelle donc des généralités sur la conception des colonnes, sur les stratégies d'acquisition du signal, sur la correction des aberrations, sur le pouvoir de résolution, sur les expériences in situ et sur d'autres approches innovantes. Quelques domaines privilégiés d'utilisation présente et future sont identifiés et décrits.

This dossier in Comptes rendus Physique is devoted to the most recent technologies and methodologies in electron microscopy available in 2014, which have provided this instrument with unique capabilities for atomic-level investigations in the domain of materials science. The present introduction provides some basic information required for an easier reading of the following manuscripts. It therefore focuses on column design, signal acquisition strategy, aberration correction, resolving power, in situ experiments and novel approaches, illustrated with a description of a few of their present and future fields of use.

Publié le :
DOI : 10.1016/j.crhy.2014.02.001
Keywords: Transmission electron microscopy, Signal generation and recording, Aberration correction, Nanolaboratory
Mot clés : Microscopie électronique à transmission, Génération et détection des signaux, Correction d'aberrations, Nanolaboratoire
Christian Colliex 1

1 Laboratoire de physique des solides, UMR CNRS 8502, Bldg. 510, Université Paris-Sud, 91405 Orsay, France
@article{CRPHYS_2014__15_2-3_101_0,
     author = {Christian Colliex},
     title = {Seeing and measuring with electrons: {Transmission} electron microscopy today and tomorrow {\textendash} {An} introduction},
     journal = {Comptes Rendus. Physique},
     pages = {101--109},
     publisher = {Elsevier},
     volume = {15},
     number = {2-3},
     year = {2014},
     doi = {10.1016/j.crhy.2014.02.001},
     language = {en},
}
TY  - JOUR
AU  - Christian Colliex
TI  - Seeing and measuring with electrons: Transmission electron microscopy today and tomorrow – An introduction
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 101
EP  - 109
VL  - 15
IS  - 2-3
PB  - Elsevier
DO  - 10.1016/j.crhy.2014.02.001
LA  - en
ID  - CRPHYS_2014__15_2-3_101_0
ER  - 
%0 Journal Article
%A Christian Colliex
%T Seeing and measuring with electrons: Transmission electron microscopy today and tomorrow – An introduction
%J Comptes Rendus. Physique
%D 2014
%P 101-109
%V 15
%N 2-3
%I Elsevier
%R 10.1016/j.crhy.2014.02.001
%G en
%F CRPHYS_2014__15_2-3_101_0
Christian Colliex. Seeing and measuring with electrons: Transmission electron microscopy today and tomorrow – An introduction. Comptes Rendus. Physique, Volume 15 (2014) no. 2-3, pp. 101-109. doi : 10.1016/j.crhy.2014.02.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.02.001/

[1] E. Ruska The development of the electron microscope and of electron microscopy, Rev. Mod. Phys., Volume 59 (1987), pp. 627-638

[2] M. von Ardenne Reminiscences on the origins of the scanning electron microscope and the electron microprobe (T. Mulvey, ed.), Advances in Imaging and Electron Physics, vol. 96, Academic Press, San Diego, USA, 1996, pp. 635-652

[3] A.V. Crewe; J. Wall; L.M. Welter A high-resolution scanning transmission electron microscope, J. Appl. Phys., Volume 39 (1968), pp. 5861-5868

[4] A.V. Crewe; J. Wall; L. Langmore Visibility of single atoms, Science, Volume 168 (1970), pp. 1338-1340

[5] G. Dupouy; F. Perrier Microscope électronique fonctionnant sous une tension d'un million de volts, J. Microsc., Volume 1 (1962), pp. 167-192

[6] P.W. Hawkes Aberration correction past and present, Philos. Trans. R. Soc. A, Volume 367 (2009), pp. 3637-3664

[7] C. Jeanguillaume; C. Colliex Spectrum-image: the next step in EELS digital acquisition and processing, Ultramicroscopy, Volume 28 (1989), pp. 252-257

[8] O. Scherzer Uber einige Fehler von Elektronenlinsen, Z. Phys., Volume 101 (1936), pp. 593-603

[9] M. Haider; S. Uhlemann; E. Schwan; H. Rose; B. Kabius; K. Urban Electron microscopy image enhanced, Nature, Volume 392 (1998), pp. 768-769

[10] O.L. Krivanek; N. Dellby; A.R. Lupini Towards sub-Å electron beams, Ultramicroscopy, Volume 78 (1999), pp. 1-11

[11] H. Rose Outline of a spherically corrected semi-aplanatic medium-voltage transmission electron microscope, Optik, Volume 85 (1990), pp. 19-24

[12] P.D. Nellist et al. Direct sub-Å imaging of a crystal lattice, Science, Volume 305 (2004), p. 1741

[13] N. Dellby et al. Dedicated STEM for 200 to 40 keV operation, Eur. Phys. J. Appl. Phys., Volume 54 (2011), p. 33505

[14] C.L. Jia; M. Lentzen; K. Urban Atomic-resolution imaging of oxygen in perovskite ceramics, Science, Volume 299 (2003), pp. 870-873

[15] C.L. Jia; K. Urban Atomic-resolution measurement of oxygen concentration in oxide materials, Science, Volume 303 (2004), pp. 2001-2004

[16] H. Lichte; M. Lehmann Electron holography – basics and applications, Rep. Prog. Phys., Volume 71 (2008), p. 016102

[17] A. Tonomura et al. Evidence for the Aharonov–Bohm effect with magnetic field completely shielded from electron wave, Phys. Rev. Lett., Volume 56 (1986), pp. 792-795

[18] K. Suenaga et al. Element-selective single atom imaging, Science, Volume 290 (2000), pp. 2280-2282

[19] N.D. Browning; M.F. Chisholm; S.J. Pennycook Atomic-resolution chemical analysis using a STEM, Nature, Volume 366 (1993), pp. 143-146

[20] P.E. Batson Simultaneous STEM imaging and EELS with atomic column sensitivity, Nature, Volume 366 (1993), p. 727

[21] D.A. Muller; Y. Tzou; R. Raj; J. Silcox Mapping of sp2 and sp3 states of carbon at subnanometer spatial resolution, Nature, Volume 366 (1993), pp. 725-727

[22] O.L. Krivanek et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscope, Nature, Volume 464 (2010), pp. 571-574

[23] S. Van Aert et al. 3D atomic imaging of crystalline nanoparticles, Nature, Volume 470 (2011), pp. 374-377

[24] D.A. Muller et al. Atomic-scale chemical imaging of composition and bonding by aberration-corrected electron microscopy, Science, Volume 319 (2008), pp. 1073-1076

[25] M. Varela et al. Applications of aberration-corrected STEM and EELS to complex oxide materials (S.J. Pennycook; P.D. Nellist, eds.), Scanning Transmission Electron Microscopy: Imaging and Analysis, Springer, 2011, pp. 429-466

[26] K. Suenaga et al. Visualizing and identifying single atoms using EELS with low accelerating voltage, Nat. Chem., Volume 1 (2009), pp. 415-418

[27] K. Suenaga; M. Koshino Atom-by-atom spectroscopy at graphene edge, Nature, Volume 468 (2010), pp. 1088-1090

[28] J.A. Mundy; Q. Mao; C.M. Brooks; D.G. Schlom; D.A. Muller Atomic-resolution chemical imaging of oxygen local bonding environments by electron energy loss spectroscopy, Appl. Phys. Lett., Volume 101 (2012) (042907-5)

[29] J. Nelayah et al. Mapping surface plasmons on a single metallic nanoparticle, Nat. Phys., Volume 3 (2007), pp. 348-353

[30] A.J. d'Alfonso; B. Freitag; D. Klenov; L.J. Allen Atomic-resolution chemical mapping using energy-dispersive X-ray spectroscopy, Phys. Rev. B, Volume 81 (2010), p. 100101

[31] L. Zagonel et al. Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure, Nano Lett., Volume 11 (2011), pp. 568-573

[32] L.H.G. Tizei; M. Kociak Spatially resolved quantum nano-optics of single photons using an electron microscope, Phys. Rev. Lett., Volume 110 (2013), p. 153604

[33] J.M. Yuk et al. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells, Science, Volume 336 (2012), pp. 61-64

[34] H.G. Liao; L. Cui; S. Whitelam; H. Zheng Real-time imaging of Pt3Fe nanorod growth in solution, Science, Volume 336 (2012), pp. 1011-1014

[35] N. de Jonge; F.M. Ross Electron microscopy of specimens in liquids, Nat. Nanotechnol., Volume 6 (2011), pp. 695-704

[36] O. Bostanjoglo et al. Nanosecond electron microscopes, Ultramicroscopy, Volume 81 (2000), pp. 141-147

[37] A.H. Zewail; J.M. Thomas 4D Electron Microscopy Imaging in Space and Time, Imperial College Press, London, 2010

[38] K.Y. Bliokh; Y.P. Bliokh; S. Savel'ev; F. Nori Semiclassical dynamics of electron wave packet states with phase vortices, Phys. Rev. Lett., Volume 99 (2007), p. 190904

[39] J. Verbeeck; H. Tian; P. Schattschneider Production and application of electron vortex beams, Nature, Volume 467 (2010), pp. 301-304

[40] D. Shechtman; I. Blech; D. Gratias; J. Cahn Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., Volume 53 (1984), pp. 1951-1953

[41] P.B. Hirsch; A. Howie; M.J. Whelan Kinematical theory of diffraction contrast of electron transmission microscope images of dislocations and other defects, Philos. Trans. R. Soc. A, Volume 252 (1960), pp. 499-529 (and references therein)

[42] S. Iijima Helical microtubules of graphitic carbon, Nature, Volume 354 (1991), pp. 56-58

[43] K. Harada; T. Matsuda; J. Bonevich; M. Igarashi; S. Kondo; G. Pozzi; U. Kawabe; A. Tonomura Real-time observation of vortex lattices in a superconductor by electron microscopy, Nature, Volume 360 (1992), pp. 51-53

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Future directions in high-resolution electron microscopy: Novel optical components and techniques

Peter Hawkes

C. R. Phys (2014)


Networking strategies of the microscopy community for improved utilization of advanced instruments: (2) The national network for transmission electron microscopy and atom probe studies in France (METSA)

Thierry Épicier; Étienne Snoeck

C. R. Phys (2014)


Shaping electron beams for the generation of innovative measurements in the (S)TEM

Jo Verbeeck; Giulio Guzzinati; Laura Clark; ...

C. R. Phys (2014)