[Méthode quasi universelle pour mesurer les caractéristiques électromagnétiques de tous types de matériaux dans le domaine des hyperfréquences]
Aujourd'hui, connaître les valeurs expérimentales des caractéristiques électromagnétiques des différents matériaux devient incontournable avec l'avancée des communications sans fil. Les outils existants pour effectuer de telles caractérisations présentent des limites, soit en termes de bandes fréquentielles réduites, soit en termes de versatilité suivant les différents types de matériaux. Sur la base de procédures bien connues dans la communauté scientifique du domaine, nous présentons dans ce contexte une nouvelle cellule de mesure équipée d'un porte-échantillon pouvant confiner tous les types de matériaux : solides, semi-solides (matériaux granulaires ou pulvérulents), liquides. Cette technique permet aussi de caractériser des matériaux de faibles épaisseurs, qui sont aussi de plus en plus utilisés dans le domaine de la RFID ou des antennes sur substrats souples.
Knowing the electromagnetic characteristics of different materials has become a major topic with the growing of wireless communications. The actual tools to perform this characterization have some limits, either in terms of limited frequency band, or in terms of inconstancy according to the different kinds of materials. On the basis of well-known procedures in the microwave domain, we present a new measurement cell equipped with a sample holder that can contain any kind of materials: solids, semi-solids (granular or powder materials), liquids. This technique can also characterize materials of thin thickness that are also more and more used in the RFID domain or in the realization of antennas on flexible substrates.
Mots-clés : Caractérisation électromagnétique, Permittivité relative, Porte-échantillon, Cellule coaxiale, Matériau souple
Élodie Georget 1 ; Redha Abdeddaim 1 ; Pierre Sabouroux 1
@article{CRPHYS_2014__15_5_448_0, author = {\'Elodie Georget and Redha Abdeddaim and Pierre Sabouroux}, title = {A quasi-universal method to measure the electromagnetic characteristics of usual materials in the microwave range}, journal = {Comptes Rendus. Physique}, pages = {448--457}, publisher = {Elsevier}, volume = {15}, number = {5}, year = {2014}, doi = {10.1016/j.crhy.2014.02.003}, language = {en}, }
TY - JOUR AU - Élodie Georget AU - Redha Abdeddaim AU - Pierre Sabouroux TI - A quasi-universal method to measure the electromagnetic characteristics of usual materials in the microwave range JO - Comptes Rendus. Physique PY - 2014 SP - 448 EP - 457 VL - 15 IS - 5 PB - Elsevier DO - 10.1016/j.crhy.2014.02.003 LA - en ID - CRPHYS_2014__15_5_448_0 ER -
%0 Journal Article %A Élodie Georget %A Redha Abdeddaim %A Pierre Sabouroux %T A quasi-universal method to measure the electromagnetic characteristics of usual materials in the microwave range %J Comptes Rendus. Physique %D 2014 %P 448-457 %V 15 %N 5 %I Elsevier %R 10.1016/j.crhy.2014.02.003 %G en %F CRPHYS_2014__15_5_448_0
Élodie Georget; Redha Abdeddaim; Pierre Sabouroux. A quasi-universal method to measure the electromagnetic characteristics of usual materials in the microwave range. Comptes Rendus. Physique, Electromagnetism / Électromagnétisme, Volume 15 (2014) no. 5, pp. 448-457. doi : 10.1016/j.crhy.2014.02.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.02.003/
[1] A new method for measuring dielectric constants and loss in the range of centimeter waves, J. Appl. Phys., Volume 7 (1946), pp. 610-616
[2] Coaxial line reflection methods for measuring dielectric properties of biological substances at radio and microwave frequencies—a review, IEEE Trans. Microw. Theory Tech., Volume 29 (1980), pp. 176-183
[3] A new formulation for characterization of materials based on measured insertion transfer function, IEEE Trans. Microw. Theory Tech., Volume 51 (2003), pp. 1946-1951
[4] Measurement of the intrinsic properties of materials by time-domain techniques, IEEE Trans. Instrum. Meas., Volume 19 (1970), pp. 377-382
[5] Automatic measurement of complex dielectric constant and permeability at microwave frequencies, Proc. IEEE, Volume 62 (1974), pp. 33-36
[6] A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies, IEEE Trans. Instrum. Meas., Volume 38 (1989), pp. 789-793
[7] et al. A free-space method for complex permittivity measurement of bulk and thin film dielectrics at microwave frequencies, PIER B, Volume 51 (2013), pp. 307-328
[8] Coaxial/cylindrical transition line for broadband permittivity measurement of civil engineering materials, Meas. Sci. Technol., Volume 17 (2006) no. 8, pp. 2241-2246
[9] A new method of obtaining the permittivity of liquids using in-waveguide technique, IEEE Microw. Wirel. Compon. Lett., Volume 16 (2006), pp. 363-365
[10] et al. Evaluation of microwave dielectric properties of giant permittivity materials by a modified resonant cavity method, Appl. Phys. Lett., Volume 91 (2006) (092906-1–092906-3)
[11] Improved technique for determining complex permittivity with the transmission/reflection method, IEEE Microw. Instrum. Meas., Volume 38 (1990), pp. 1096-1103
[12] A new microwave method based on transmission scattering parameter measurements for simultaneous broadband and stable permittivity and permeability determination, PIER, Volume 93 (2009), pp. 161-176
[13] et al. Resolving phase ambiguity in the inverse problem of reflection-only measurement methods, PIER, Volume 129 (2012), pp. 405-420
[14] et al. A simple procedure to determine the complex permittivity of materials without ambiguity from reflection measurements, MOLT, Volume 25 (2000), pp. 191-194
[15] et al. Transmission/reflection and short-circuit line methods for measuring permittivity and permeability, NIST, 1993 (Technical Report)
[16] et al. Microwave Electronics: Measurement and Materials Characterization, Wiley, Chichester, UK, 2004
[17] Micro-ondes. Tome 1. Lignes, guides et cavités, Dunod, Paris, 1996
[18] A nonlinear least-squares solution with causality constraints applied to transmission line permittivity and permeability determination, IEEE Microw. Instrum. Meas., Volume 41 (1992), pp. 646-652
[19] Complex permittivity measurements of common plastics over variable temperatures, IEEE Trans. Microw. Theory Tech., Volume 51 (2003), pp. 727-733
[20] www.epsimu.fr
, 2008–2014[21] EpsiMu, a toolkit for permittivity and permeability measurement in microwave domain at real time of all materials: applications to solid and semisolid materials, MOTL, Volume 52 (2010), pp. 2643-2648
[22] Localization and derivation of an optimal sphere for 3d perfectly conducting objects, J. Electromagn. Waves Appl., Volume 16 (2002), pp. 771-791
[23] Water–ethanol mixtures at different compositions and temperatures. a dielectric relaxation study, J. Phys. Chem., Volume 104 (2000), pp. 7420-7428
[24] Measurement of the complex dielectric constant down to helium temperatures. i. Reflection method from 1 MHz to 20 GHz using an open ended coaxial line, Rev. Sci. Instrum., Volume 71 (2000), pp. 473-477
- Dielectric and Biological Characterization of Liver Tissue in a High-Fat Diet Mouse Model, Sensors, Volume 23 (2023) no. 7, p. 3434 | DOI:10.3390/s23073434
- Hyperfine Structure of Regolith Unveiled by Chang’E-5 Lunar Regolith Penetrating Radar, IEEE Transactions on Geoscience and Remote Sensing, Volume 60 (2022), p. 1 | DOI:10.1109/tgrs.2022.3148200
- Telemetry antennas withstanding very high accelerations and centrifugal forces, International Journal of Microwave and Wireless Technologies, Volume 14 (2022) no. 6, p. 723 | DOI:10.1017/s1759078721000854
- Determination of Broadband Complex EM Parameters of Powdered Materials: 1. MCMC‐Based Two‐Port Transmission Line Measurements, Journal of Geophysical Research: Planets, Volume 127 (2022) no. 10 | DOI:10.1029/2022je007199
- Evaluation of new MR invisible silicon carbide based dielectric pads for 7 T MRI, Magnetic Resonance Imaging, Volume 90 (2022), p. 37 | DOI:10.1016/j.mri.2022.04.002
- Cometary dust analogues for physics experiments, Monthly Notices of the Royal Astronomical Society, Volume 515 (2022) no. 3, p. 3420 | DOI:10.1093/mnras/stac1734
- , 2020 14th European Conference on Antennas and Propagation (EuCAP) (2020), p. 1 | DOI:10.23919/eucap48036.2020.9135589
- A new solution of permittivity and permeability measurement system with temperature variation, Journal of Physics: Conference Series, Volume 1461 (2020) no. 1, p. 012084 | DOI:10.1088/1742-6596/1461/1/012084
- New volumetric CNT-doped gelatin–cellulose scaffolds for skeletal muscle tissue engineering, Nanoscale Advances, Volume 2 (2020) no. 7, p. 2885 | DOI:10.1039/d0na00268b
- Electromagnetic Characteristics Measurement Setup at Variable Temperatures Using a Coaxial Cell, Advances in Materials Science and Engineering, Volume 2019 (2019), p. 1 | DOI:10.1155/2019/3646979
- Coaxial Probe for Dielectric Measurements of Aerated Pulverized Materials, IEEE Transactions on Instrumentation and Measurement, Volume 68 (2019) no. 5, p. 1402 | DOI:10.1109/tim.2019.2905710
- A laboratory-based dielectric model for the radar sounding of the martian subsurface, Icarus, Volume 321 (2019), p. 960 | DOI:10.1016/j.icarus.2018.12.029
- Experimenting with Mixtures of Water Ice and Dust as Analogues for Icy Planetary Material, Space Science Reviews, Volume 215 (2019) no. 5 | DOI:10.1007/s11214-019-0603-0
- , 2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace) (2018), p. 145 | DOI:10.1109/metroaerospace.2018.8453527
- Compressed perovskite aqueous mixtures near their phase transitions show very high permittivities: New prospects for high‐field MRI dielectric shimming, Magnetic Resonance in Medicine, Volume 79 (2018) no. 3, p. 1753 | DOI:10.1002/mrm.26771
- , 2017 11th European Conference on Antennas and Propagation (EUCAP) (2017), p. 1823 | DOI:10.23919/eucap.2017.7928361
- Mimicking the Electromagnetic Distribution in the Human Brain: A Multi-frequency MRI Head Phantom, Applied Magnetic Resonance, Volume 48 (2017) no. 3, p. 213 | DOI:10.1007/s00723-017-0862-4
- Real-time microwave sensor system for detection of polluting substances in pure water, Review of Scientific Instruments, Volume 88 (2017) no. 8 | DOI:10.1063/1.4998982
- Characterization of the permittivity of controlled porous water ice-dust mixtures to support the radar exploration of icy bodies, Journal of Geophysical Research: Planets, Volume 121 (2016) no. 12, p. 2426 | DOI:10.1002/2016je005045
- Cyclic concentrator, carpet cloaks and fisheye lens via transformation plasmonics, Journal of Optics, Volume 18 (2016) no. 4, p. 044023 | DOI:10.1088/2040-8978/18/4/044023
- Permittivity measurements of porous matter in support of investigations of the surface and interior of 67P/Churyumov-Gerasimenko, Astronomy Astrophysics, Volume 583 (2015), p. A39 | DOI:10.1051/0004-6361/201526099
- AN OPEN-SLEEVE FOLDED U-SHAPED MULTIBAND ANTENNA, Progress In Electromagnetics Research Letters, Volume 52 (2015), p. 1 | DOI:10.2528/pierl14121601
- A new method to design a multi-band flexible textile antenna [AMTA corner], IEEE Antennas and Propagation Magazine, Volume 56 (2014) no. 3, p. 240 | DOI:10.1109/map.2014.6867723
Cité par 23 documents. Sources : Crossref
Commentaires - Politique