[Méthode quasi universelle pour mesurer les caractéristiques électromagnétiques de tous types de matériaux dans le domaine des hyperfréquences]
Aujourd'hui, connaître les valeurs expérimentales des caractéristiques électromagnétiques des différents matériaux devient incontournable avec l'avancée des communications sans fil. Les outils existants pour effectuer de telles caractérisations présentent des limites, soit en termes de bandes fréquentielles réduites, soit en termes de versatilité suivant les différents types de matériaux. Sur la base de procédures bien connues dans la communauté scientifique du domaine, nous présentons dans ce contexte une nouvelle cellule de mesure équipée d'un porte-échantillon pouvant confiner tous les types de matériaux : solides, semi-solides (matériaux granulaires ou pulvérulents), liquides. Cette technique permet aussi de caractériser des matériaux de faibles épaisseurs, qui sont aussi de plus en plus utilisés dans le domaine de la RFID ou des antennes sur substrats souples.
Knowing the electromagnetic characteristics of different materials has become a major topic with the growing of wireless communications. The actual tools to perform this characterization have some limits, either in terms of limited frequency band, or in terms of inconstancy according to the different kinds of materials. On the basis of well-known procedures in the microwave domain, we present a new measurement cell equipped with a sample holder that can contain any kind of materials: solids, semi-solids (granular or powder materials), liquids. This technique can also characterize materials of thin thickness that are also more and more used in the RFID domain or in the realization of antennas on flexible substrates.
Mot clés : Caractérisation électromagnétique, Permittivité relative, Porte-échantillon, Cellule coaxiale, Matériau souple
Élodie Georget 1 ; Redha Abdeddaim 1 ; Pierre Sabouroux 1
@article{CRPHYS_2014__15_5_448_0, author = {\'Elodie Georget and Redha Abdeddaim and Pierre Sabouroux}, title = {A quasi-universal method to measure the electromagnetic characteristics of usual materials in the microwave range}, journal = {Comptes Rendus. Physique}, pages = {448--457}, publisher = {Elsevier}, volume = {15}, number = {5}, year = {2014}, doi = {10.1016/j.crhy.2014.02.003}, language = {en}, }
TY - JOUR AU - Élodie Georget AU - Redha Abdeddaim AU - Pierre Sabouroux TI - A quasi-universal method to measure the electromagnetic characteristics of usual materials in the microwave range JO - Comptes Rendus. Physique PY - 2014 SP - 448 EP - 457 VL - 15 IS - 5 PB - Elsevier DO - 10.1016/j.crhy.2014.02.003 LA - en ID - CRPHYS_2014__15_5_448_0 ER -
%0 Journal Article %A Élodie Georget %A Redha Abdeddaim %A Pierre Sabouroux %T A quasi-universal method to measure the electromagnetic characteristics of usual materials in the microwave range %J Comptes Rendus. Physique %D 2014 %P 448-457 %V 15 %N 5 %I Elsevier %R 10.1016/j.crhy.2014.02.003 %G en %F CRPHYS_2014__15_5_448_0
Élodie Georget; Redha Abdeddaim; Pierre Sabouroux. A quasi-universal method to measure the electromagnetic characteristics of usual materials in the microwave range. Comptes Rendus. Physique, Volume 15 (2014) no. 5, pp. 448-457. doi : 10.1016/j.crhy.2014.02.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.02.003/
[1] A new method for measuring dielectric constants and loss in the range of centimeter waves, J. Appl. Phys., Volume 7 (1946), pp. 610-616
[2] Coaxial line reflection methods for measuring dielectric properties of biological substances at radio and microwave frequencies—a review, IEEE Trans. Microw. Theory Tech., Volume 29 (1980), pp. 176-183
[3] A new formulation for characterization of materials based on measured insertion transfer function, IEEE Trans. Microw. Theory Tech., Volume 51 (2003), pp. 1946-1951
[4] Measurement of the intrinsic properties of materials by time-domain techniques, IEEE Trans. Instrum. Meas., Volume 19 (1970), pp. 377-382
[5] Automatic measurement of complex dielectric constant and permeability at microwave frequencies, Proc. IEEE, Volume 62 (1974), pp. 33-36
[6] A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies, IEEE Trans. Instrum. Meas., Volume 38 (1989), pp. 789-793
[7] et al. A free-space method for complex permittivity measurement of bulk and thin film dielectrics at microwave frequencies, PIER B, Volume 51 (2013), pp. 307-328
[8] Coaxial/cylindrical transition line for broadband permittivity measurement of civil engineering materials, Meas. Sci. Technol., Volume 17 (2006) no. 8, pp. 2241-2246
[9] A new method of obtaining the permittivity of liquids using in-waveguide technique, IEEE Microw. Wirel. Compon. Lett., Volume 16 (2006), pp. 363-365
[10] et al. Evaluation of microwave dielectric properties of giant permittivity materials by a modified resonant cavity method, Appl. Phys. Lett., Volume 91 (2006) (092906-1–092906-3)
[11] Improved technique for determining complex permittivity with the transmission/reflection method, IEEE Microw. Instrum. Meas., Volume 38 (1990), pp. 1096-1103
[12] A new microwave method based on transmission scattering parameter measurements for simultaneous broadband and stable permittivity and permeability determination, PIER, Volume 93 (2009), pp. 161-176
[13] et al. Resolving phase ambiguity in the inverse problem of reflection-only measurement methods, PIER, Volume 129 (2012), pp. 405-420
[14] et al. A simple procedure to determine the complex permittivity of materials without ambiguity from reflection measurements, MOLT, Volume 25 (2000), pp. 191-194
[15] et al. Transmission/reflection and short-circuit line methods for measuring permittivity and permeability, NIST, 1993 (Technical Report)
[16] et al. Microwave Electronics: Measurement and Materials Characterization, Wiley, Chichester, UK, 2004
[17] Micro-ondes. Tome 1. Lignes, guides et cavités, Dunod, Paris, 1996
[18] A nonlinear least-squares solution with causality constraints applied to transmission line permittivity and permeability determination, IEEE Microw. Instrum. Meas., Volume 41 (1992), pp. 646-652
[19] Complex permittivity measurements of common plastics over variable temperatures, IEEE Trans. Microw. Theory Tech., Volume 51 (2003), pp. 727-733
[20] www.epsimu.fr
, 2008–2014[21] EpsiMu, a toolkit for permittivity and permeability measurement in microwave domain at real time of all materials: applications to solid and semisolid materials, MOTL, Volume 52 (2010), pp. 2643-2648
[22] Localization and derivation of an optimal sphere for 3d perfectly conducting objects, J. Electromagn. Waves Appl., Volume 16 (2002), pp. 771-791
[23] Water–ethanol mixtures at different compositions and temperatures. a dielectric relaxation study, J. Phys. Chem., Volume 104 (2000), pp. 7420-7428
[24] Measurement of the complex dielectric constant down to helium temperatures. i. Reflection method from 1 MHz to 20 GHz using an open ended coaxial line, Rev. Sci. Instrum., Volume 71 (2000), pp. 473-477
Cité par Sources :
Commentaires - Politique