The “sabre” antenna is an array of two monopole elements, vertically polarized with omnidirectional radiation patterns, and placed on either side of a composite material on the tail of an airplane. As an in-phase reflector plane, the antenna uses a compact dual-layer high-impedance surface (DL-HIS) with offset mushroom-like Sivenpiper square shape unit cells. This topology allows one to control both operational frequency and bandgap width, while reducing the total height of the antenna to under . The designed antenna structure has a wide bandwidth higher than 24% around 1.4 GHz. The measurements and numerical simulations agree very well.
L'antenne « sabre » est une antenne réseau formée de deux monopôles à polarisation verticale et rayonnement omnidirectionnel, placées de part et d'autre d'un matériau composite sur la dérive d'un avion. L'antenne utilise, comme plan réflecteur en phase, une surface haute impédance (SHI) formée d'une double-couche de cellules champignons de « type Sivenpiper » carrées décalées. La topologie choisie permet de contrôler simultanément la fréquence centrale et la largeur de bande utile pour une compacité optimum, avec une hauteur totale inférieure à . La structure antennaire présente une bande passante supérieure à 24% autour de 1,4 GHz. Les mesures et les simulations numériques sont en bon accord.
Mots-clés : Métamatériau, Antenne monopole, Antenne « sabre », Antenne large-bande, Antenne ultra-compacte
Habiba Hafdallah Ouslimani 1; Tangjie Yuan 1; Houcine Kanane 1, 2; Alain Priou 1; Gérard Collignon 3; Guillaume Lacotte 3
@article{CRPHYS_2014__15_5_458_0, author = {Habiba Hafdallah Ouslimani and Tangjie Yuan and Houcine Kanane and Alain Priou and G\'erard Collignon and Guillaume Lacotte}, title = {Metamaterial-based {\textquotedblleft}sabre{\textquotedblright} antenna}, journal = {Comptes Rendus. Physique}, pages = {458--467}, publisher = {Elsevier}, volume = {15}, number = {5}, year = {2014}, doi = {10.1016/j.crhy.2014.04.001}, language = {en}, }
TY - JOUR AU - Habiba Hafdallah Ouslimani AU - Tangjie Yuan AU - Houcine Kanane AU - Alain Priou AU - Gérard Collignon AU - Guillaume Lacotte TI - Metamaterial-based “sabre” antenna JO - Comptes Rendus. Physique PY - 2014 SP - 458 EP - 467 VL - 15 IS - 5 PB - Elsevier DO - 10.1016/j.crhy.2014.04.001 LA - en ID - CRPHYS_2014__15_5_458_0 ER -
%0 Journal Article %A Habiba Hafdallah Ouslimani %A Tangjie Yuan %A Houcine Kanane %A Alain Priou %A Gérard Collignon %A Guillaume Lacotte %T Metamaterial-based “sabre” antenna %J Comptes Rendus. Physique %D 2014 %P 458-467 %V 15 %N 5 %I Elsevier %R 10.1016/j.crhy.2014.04.001 %G en %F CRPHYS_2014__15_5_458_0
Habiba Hafdallah Ouslimani; Tangjie Yuan; Houcine Kanane; Alain Priou; Gérard Collignon; Guillaume Lacotte. Metamaterial-based “sabre” antenna. Comptes Rendus. Physique, Electromagnetism / Électromagnétisme, Volume 15 (2014) no. 5, pp. 458-467. doi : 10.1016/j.crhy.2014.04.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.04.001/
[1] Low-profile, dual-polarised antenna for aeronautical and land mobile Satcom, Int. J. Antennas Propag. (2009) (ID 984972, 6 pages) | DOI
[2] Low profile, dual polarised antenna for aeronautical and land mobile Satcom, ASMS '08, Bologna, Italy, ERA Technology Ltd ( August 2008 ), pp. 16-19
[3] Analysis of conformal antennas for avionics applications, Chalmers University, January 2007 (PhD thesis)
[4] Smart antennas in aerospace applications, 2010 URSI IEEE International Symposium on Electromagnetic Theory, 2010, pp. 260-263
[5] Antenna-based multipath and interference mitigation for aeronautical applications: present and future, Fort Worth, Texas, USA ( September 2006 ), pp. 26-29 http://www.ion.org
[6] A dual-layer EBG-based miniaturized patch multi-antenna structure, APSURSI ( July 2011 ), pp. 1828-1831
[7] A compact low-permittivity dual-layer EBG structure for mutual coupling reduction, Int. J. Antennas Propag., Volume 2011 ( June 2011 ) (article ID 237454)
[8] A double-layer EBG structure for slot-line printed devices, IEEE Antennas and Propagation Society International Symposium, vol. 4, 2004, pp. 3553-3556
[9] A novel design approach for dual-band electromagnetic band-gap structure, Prog. Electromagn. Res., Volume 4 (2008), pp. 81-91
[10] A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits, IEEE Trans. Microw. Theory Tech., Volume 53 (2005) no. 1, pp. 183-190
[11] Novel wideband directional dipole antenna on a mushroom like EBG structure, IEEE Trans. Antennas Propag., Volume 56 (2008), pp. 1242-1250
[12] Effects of EBG reflection phase profiles on the input impedance and bandwidth of ultrathin directional dipoles, IEEE Trans. Antennas Propag., Volume 53 (2005) no. 11, pp. 3664-3672
[13] http://www.cst.com (CST MWS. Comput. Simulation Technol., Darmstadt, Germany [online])
[14] High-impedance electromagnetic surfaces, University of California, Los Angeles, USA, 1999 (Ph.D. dissertation)
[15] High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Trans. Microw. Theory Tech., Volume 47 (1999) no. 11, pp. 2059-2074
[16] D. Sieenpiper, J. Colburn, B. Fong, M. Ganz, M. Gyure, J. Lynch, J. Ottusch, J. Visher, Artificial impedance surface, 9 November 2010, U.S. Patent No. 7830310.
[17] Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications, IEEE Trans. Antenn. Propag. (The Cambridge RF and Microwave Engineering Series), Volume 51 (2009) no. 10, pp. 59-61 (Chapter 3)
[18] High-impedance surfaces based antennas for high data rate communications at 40 GHz, Prog. Electromagn. Res. C, Volume 13 (2010), pp. 217-229
[19] Metamaterial antennas for aeronautic applications, University of Paris-Ouest–Nanterre, Nanterre, France, 2012 (Ph.D. dissertation)
Cited by Sources:
Comments - Policy