[Potentialités des plasmas froids pour la reconfigurabilité de dispositifs micro-ondes]
Nous présentons dans ce papier trois exemples de travaux menés à Toulouse par des équipes issues des communautés micro-ondes et plasma. L'objectif est d'utiliser des plasmas froids pour rendre un dispositif micro-ondes reconfigurable. En effet, la permittivité relative du plasma peut être contrôlée et varier de l'unité jusqu'à des valeurs négatives. L'exploitation de cette propriété s'avère potentiellement très intéressante. En revanche, aux fréquences micro-ondes, les pertes électromagnétiques sont importantes. L'intégration de plasmas dans des structures planaires puis dans des métamatériaux est présentée. En complément, nous exposons le principe d'une antenne à balayage à onde de fuite utilisant un plasma.
Three examples of results achieved from cooperative works with microwave and plasma research groups in Toulouse (France) are presented in this paper. They are focused on the use of few non-thermal plasmas to make a microwave device reconfigurable. The relative permittivity of such a plasma medium can be tuned from unity to negative values. This special feature appears to be very attractive, although the electromagnetic losses are significant. The use of plasmas with planar waveguides and within metamaterials is discussed. In addition, the basic principles of a scanning antenna built with a leaky wave in a plasma layer are presented.
Mot clés : Micro-ondes, Plasma froid, Métamatériaux, Onde de fuite, Antenne
Jérôme Sokoloff 1, 2 ; Olivier Pascal 1, 2 ; Thierry Callegari 1, 2 ; Romain Pascaud 3 ; Francisco Pizarro 1, 3 ; Laurent Liard 1, 2 ; Juslan Lo 1, 2 ; Asma Kallel 1, 2
@article{CRPHYS_2014__15_5_468_0, author = {J\'er\^ome Sokoloff and Olivier Pascal and Thierry Callegari and Romain Pascaud and Francisco Pizarro and Laurent Liard and Juslan Lo and Asma Kallel}, title = {Non-thermal plasma potentialities for microwave device reconfigurability}, journal = {Comptes Rendus. Physique}, pages = {468--478}, publisher = {Elsevier}, volume = {15}, number = {5}, year = {2014}, doi = {10.1016/j.crhy.2014.02.006}, language = {en}, }
TY - JOUR AU - Jérôme Sokoloff AU - Olivier Pascal AU - Thierry Callegari AU - Romain Pascaud AU - Francisco Pizarro AU - Laurent Liard AU - Juslan Lo AU - Asma Kallel TI - Non-thermal plasma potentialities for microwave device reconfigurability JO - Comptes Rendus. Physique PY - 2014 SP - 468 EP - 478 VL - 15 IS - 5 PB - Elsevier DO - 10.1016/j.crhy.2014.02.006 LA - en ID - CRPHYS_2014__15_5_468_0 ER -
%0 Journal Article %A Jérôme Sokoloff %A Olivier Pascal %A Thierry Callegari %A Romain Pascaud %A Francisco Pizarro %A Laurent Liard %A Juslan Lo %A Asma Kallel %T Non-thermal plasma potentialities for microwave device reconfigurability %J Comptes Rendus. Physique %D 2014 %P 468-478 %V 15 %N 5 %I Elsevier %R 10.1016/j.crhy.2014.02.006 %G en %F CRPHYS_2014__15_5_468_0
Jérôme Sokoloff; Olivier Pascal; Thierry Callegari; Romain Pascaud; Francisco Pizarro; Laurent Liard; Juslan Lo; Asma Kallel. Non-thermal plasma potentialities for microwave device reconfigurability. Comptes Rendus. Physique, Volume 15 (2014) no. 5, pp. 468-478. doi : 10.1016/j.crhy.2014.02.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.02.006/
[1] A coplanar reconfigurable folded slot antenna without bias network for WLAN applications, IEEE Antennas Wirel. Propag. Lett., Volume 8 (2009), pp. 1057-1060
[2] Millimeter-wave MEMS tunable low pass filter with reconfigurable series inductors and capacitive shunt switches, IEEE Microw. Wirel. Compon. Lett., Volume 15 (2005) no. 10, pp. 691-693
[3] Continuously polarization reconfigurable antenna element by using liquid crystal based tunable coupled line, Electron. Lett., Volume 48 (2012) no. 3, pp. 141-143
[4] Design of a polarisation reconfigurable patch antenna using ferrimagnetic materials, IET Microw. Antennas Propag., Volume 6 (2012) no. 2, pp. 158-164
[5] et al. Microwave Duplexers, Mc Graw-Hill, 1948
[6] Plasma reflectors for electronic beam steering in radar systems, IEEE Trans. Plasma Sci., Volume 19 (1991) no. 6, pp. 1228-1234
[7] et al. Application of plasma columns to radiofrequency antennas, Appl. Phys. Lett., Volume 74 (1999) no. 22, pp. 3272-3274
[8] et al. Symmetrical coupled microstrip lines with epsilon negative metamaterial loading, IEEE Trans. Magn., Volume 45 (2009) no. 3, pp. 1182-1185
[9] et al. Subwavelength, compact, resonant patch antennas loaded with metamaterials, IEEE Trans. Antennas Propag., Volume 55 (2007) no. 1, pp. 13-25
[10] Gas Discharge Physics, Springer, 1991
[11] Experimental study of RF/microplasma interaction using an inverted microstrip line, Gothenburg, Sweden ( 8–12 April 2013 ), pp. 8-12
[12] et al. Direct current glow discharges in atmospheric air, IEEE Trans. Plasma Sci., Volume 36 (1999) no. 4, pp. 3770-3772
[13] et al. Ignition of microcathode sustained discharge, Appl. Phys. Lett., Volume 74 (2008) no. 25, pp. 1236-1237
[14] Negative refraction makes a perfect lens, Phys. Rev. Lett., Volume 85 (2000) no. 18, pp. 3966-3969
[15] Experimental verification of a negative index of refraction, Science, Volume 292 (2001) no. 5514, pp. 77-79
[16] Controlling electromagnetic fields, Science, Volume 312 (2006) no. 5781, pp. 1780-1782
[17] How to be truly photonic, Science, Volume 289 (2000) no. 5479, pp. 557-559
[18] Roadmap on Photonic Crystals (S. Noda; T. Baba, eds.), Kluwer Academic, Boston, MA, USA, 2003
[19] Tunable bilayered metasurface for frequency reconfigurable directive emissions, Appl. Phys. Lett., Volume 97 (2010) no. 6 (064101-1–064101-3)
[20] Modeling of electromagnetic band gap structure devices tuned by ferrite cylinders, Microw. Opt. Technol. Lett., Volume 43 (2004) no. 5, pp. 395-400
[21] Tunable ferroelectric photonic crystals based on porous silicon templates infiltrated by sodium nitrite, Appl. Phys. Lett., Volume 90 (2007) no. 16, p. 161120
[22] Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two-dimensional array of columnar microplasmas, Appl. Phys. Lett., Volume 87 (2005) no. 24 (241505-1-3)
[23] Structure planaire à bande interdite électromagnétique reconfigurable par plasma, JCMM2012, Chambéry, France ( 28 March 2012 )
[24] Plasma-based localized defect for switchable coupling applications, Appl. Phys. Lett., Volume 98 (2011) no. 13 (134103-1–3)
[25] Reconfigurable electromagnetic band gap device using plasma as a localized tunable defect, Appl. Phys. Lett., Volume 96 (2010), p. 251501
[26] Reconfigurable Ebg at 18 GHz using perimeter defects, J. Electromagn. Waves Appl., Volume 23 (2009), pp. 1029-1037
[27] Etude de la reconfigurabilité d'une structure à bande interdite électromagnétique (BIE) métallique par plasmas de décharge, Université Paul-Sabatier, Toulouse, 2012 (PhD Thesis)
[28] Plasmas as metamaterials: a review, Plasma Sources Sci. Technol., Volume 21 (2012) (013001-1-18)
[29] Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth, IEEE Trans. Microw. Theory Tech., Volume 52 (2004) no. 12, pp. 2678-2690
[30] Leaky wave radiation from a periodically photoexcited semiconductor slab waveguide, IEEE Trans. Microw. Theory Tech., Volume 43 (1995) no. 9, pp. 2435-2441
[31] Experimental studies of magnetically scannable leaky-wave antennas having a corrugated ferrite slab/dielectric layer structure, IEEE Trans. Antennas Propag., Volume 36 (1988) no. 7, pp. 911-917
[32] Rigorous analysis and investigations of the scan antennas on a ferroelectric substrate, IEEE Trans. Microw. Theory Tech., Volume 53 (2005) no. 2, pp. 427-438
[33] The spectrum of electromagnetic waves guided by a plasma layer, Proc. IEEE, Volume 51 (1963) no. 2, pp. 317-332
[34] The influence of complex waves on the radiation field of a slot-excited plasma layer, IRE Trans. Antennas Propag., Volume 10 (1962), pp. 55-65
[35] http://www.ansoft.com ([Online]. Available: Ansoft Corporation)
[36] Theory and simulations of a beam-scanning plasma antenna, EuCAP 2013, Gothenburg, Sweden ( 8–12 April 2013 ), pp. 3457-3461
[37] Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures, Meas. Sci. Technol., Volume 10 (1999) no. 5, pp. 387-392
[38] F. Gaboriau, R. Baude, L. Liard, G. J. M Hagelaar, Experimental characterization of the electron transport across a magnetic field barrier, presented at the 65th Annual GEC, Austin, USA, 22–26 October 2012, Austin, USA.
[39] Finite volume time domain modelling of microwave breakdown and plasma formation in a metallic aperture, Comput. Phys. Commun., Volume 183 (2013) no. 8, pp. 1634-1640
Cité par Sources :
Commentaires - Politique