Comptes Rendus
Non-thermal plasma potentialities for microwave device reconfigurability
[Potentialités des plasmas froids pour la reconfigurabilité de dispositifs micro-ondes]
Comptes Rendus. Physique, Volume 15 (2014) no. 5, pp. 468-478.

Nous présentons dans ce papier trois exemples de travaux menés à Toulouse par des équipes issues des communautés micro-ondes et plasma. L'objectif est d'utiliser des plasmas froids pour rendre un dispositif micro-ondes reconfigurable. En effet, la permittivité relative du plasma peut être contrôlée et varier de l'unité jusqu'à des valeurs négatives. L'exploitation de cette propriété s'avère potentiellement très intéressante. En revanche, aux fréquences micro-ondes, les pertes électromagnétiques sont importantes. L'intégration de plasmas dans des structures planaires puis dans des métamatériaux est présentée. En complément, nous exposons le principe d'une antenne à balayage à onde de fuite utilisant un plasma.

Three examples of results achieved from cooperative works with microwave and plasma research groups in Toulouse (France) are presented in this paper. They are focused on the use of few non-thermal plasmas to make a microwave device reconfigurable. The relative permittivity of such a plasma medium can be tuned from unity to negative values. This special feature appears to be very attractive, although the electromagnetic losses are significant. The use of plasmas with planar waveguides and within metamaterials is discussed. In addition, the basic principles of a scanning antenna built with a leaky wave in a plasma layer are presented.

Publié le :
DOI : 10.1016/j.crhy.2014.02.006
Keywords: Microwave, Cold plasma, Metamaterials, Leaky wave, Antenna
Mot clés : Micro-ondes, Plasma froid, Métamatériaux, Onde de fuite, Antenne
Jérôme Sokoloff 1, 2 ; Olivier Pascal 1, 2 ; Thierry Callegari 1, 2 ; Romain Pascaud 3 ; Francisco Pizarro 1, 3 ; Laurent Liard 1, 2 ; Juslan Lo 1, 2 ; Asma Kallel 1, 2

1 Université de Toulouse, UPS-INPT LAPLACE, 118, route de Narbonne, Bât. 3R2, 31062 Toulouse cedex 9, France
2 Laboratoire Plasma et Conversion d'Énergie (LAPLACE), CNRS, 31000 Toulouse, France
3 Université de Toulouse, ISAE DEOS, 10, avenue Édouard-Belin, BP 54032, 31055 Toulouse cedex 4, France
@article{CRPHYS_2014__15_5_468_0,
     author = {J\'er\^ome Sokoloff and Olivier Pascal and Thierry Callegari and Romain Pascaud and Francisco Pizarro and Laurent Liard and Juslan Lo and Asma Kallel},
     title = {Non-thermal plasma potentialities for microwave device reconfigurability},
     journal = {Comptes Rendus. Physique},
     pages = {468--478},
     publisher = {Elsevier},
     volume = {15},
     number = {5},
     year = {2014},
     doi = {10.1016/j.crhy.2014.02.006},
     language = {en},
}
TY  - JOUR
AU  - Jérôme Sokoloff
AU  - Olivier Pascal
AU  - Thierry Callegari
AU  - Romain Pascaud
AU  - Francisco Pizarro
AU  - Laurent Liard
AU  - Juslan Lo
AU  - Asma Kallel
TI  - Non-thermal plasma potentialities for microwave device reconfigurability
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 468
EP  - 478
VL  - 15
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2014.02.006
LA  - en
ID  - CRPHYS_2014__15_5_468_0
ER  - 
%0 Journal Article
%A Jérôme Sokoloff
%A Olivier Pascal
%A Thierry Callegari
%A Romain Pascaud
%A Francisco Pizarro
%A Laurent Liard
%A Juslan Lo
%A Asma Kallel
%T Non-thermal plasma potentialities for microwave device reconfigurability
%J Comptes Rendus. Physique
%D 2014
%P 468-478
%V 15
%N 5
%I Elsevier
%R 10.1016/j.crhy.2014.02.006
%G en
%F CRPHYS_2014__15_5_468_0
Jérôme Sokoloff; Olivier Pascal; Thierry Callegari; Romain Pascaud; Francisco Pizarro; Laurent Liard; Juslan Lo; Asma Kallel. Non-thermal plasma potentialities for microwave device reconfigurability. Comptes Rendus. Physique, Volume 15 (2014) no. 5, pp. 468-478. doi : 10.1016/j.crhy.2014.02.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.02.006/

[1] D.E. Anagnostou; A.A. Gheethan A coplanar reconfigurable folded slot antenna without bias network for WLAN applications, IEEE Antennas Wirel. Propag. Lett., Volume 8 (2009), pp. 1057-1060

[2] S. Lee; J.-M. Kim; J.-M. Kim; Y.-K. Kim; Y. Kwon Millimeter-wave MEMS tunable low pass filter with reconfigurable series inductors and capacitive shunt switches, IEEE Microw. Wirel. Compon. Lett., Volume 15 (2005) no. 10, pp. 691-693

[3] O.H. Karabey; S. Bildik; S. Strunck; A. Gaebler; R. Jakoby Continuously polarization reconfigurable antenna element by using liquid crystal based tunable coupled line, Electron. Lett., Volume 48 (2012) no. 3, pp. 141-143

[4] T. Zervos; A.A. Alexandridis; F. Lazarakis; M. Pissas; D. Stamopoulos; E.S. Angelopoulos; K. Dangakis Design of a polarisation reconfigurable patch antenna using ferrimagnetic materials, IET Microw. Antennas Propag., Volume 6 (2012) no. 2, pp. 158-164

[5] L.D. Smullin et al. Microwave Duplexers, Mc Graw-Hill, 1948

[6] W.M. Manheimer Plasma reflectors for electronic beam steering in radar systems, IEEE Trans. Plasma Sci., Volume 19 (1991) no. 6, pp. 1228-1234

[7] G.G. Borg et al. Application of plasma columns to radiofrequency antennas, Appl. Phys. Lett., Volume 74 (1999) no. 22, pp. 3272-3274

[8] S.E. Lauro et al. Symmetrical coupled microstrip lines with epsilon negative metamaterial loading, IEEE Trans. Magn., Volume 45 (2009) no. 3, pp. 1182-1185

[9] A. Alu et al. Subwavelength, compact, resonant patch antennas loaded with metamaterials, IEEE Trans. Antennas Propag., Volume 55 (2007) no. 1, pp. 13-25

[10] Y.-P. Raizer Gas Discharge Physics, Springer, 1991

[11] F. Pizarro; R. Pascaud; O. Pascal; T. Callegari; L. Liard Experimental study of RF/microplasma interaction using an inverted microstrip line, Gothenburg, Sweden ( 8–12 April 2013 ), pp. 8-12

[12] R.H. Stark et al. Direct current glow discharges in atmospheric air, IEEE Trans. Plasma Sci., Volume 36 (1999) no. 4, pp. 3770-3772

[13] K. Makasheva et al. Ignition of microcathode sustained discharge, Appl. Phys. Lett., Volume 74 (2008) no. 25, pp. 1236-1237

[14] J.-B. Pendry Negative refraction makes a perfect lens, Phys. Rev. Lett., Volume 85 (2000) no. 18, pp. 3966-3969

[15] R.A. Shelby; D.R. Smith; S. Schultz Experimental verification of a negative index of refraction, Science, Volume 292 (2001) no. 5514, pp. 77-79

[16] J.-B. Pendry; D. Schurig; D.R. Smith Controlling electromagnetic fields, Science, Volume 312 (2006) no. 5781, pp. 1780-1782

[17] E. Yablonovitch How to be truly photonic, Science, Volume 289 (2000) no. 5479, pp. 557-559

[18] Roadmap on Photonic Crystals (S. Noda; T. Baba, eds.), Kluwer Academic, Boston, MA, USA, 2003

[19] S.N. Burokur; J.-P. Daniel; P. Ratajczak; A. de Lustrac Tunable bilayered metasurface for frequency reconfigurable directive emissions, Appl. Phys. Lett., Volume 97 (2010) no. 6 (064101-1–064101-3)

[20] Q. Wang; Y. Zhang; E. Li; S. Yan; B.L. Ooi Modeling of electromagnetic band gap structure devices tuned by ferrite cylinders, Microw. Opt. Technol. Lett., Volume 43 (2004) no. 5, pp. 395-400

[21] T.V. Murzina; F.Y. Sychev; I.A. Kolmychek; O.A. Aktsipetrov Tunable ferroelectric photonic crystals based on porous silicon templates infiltrated by sodium nitrite, Appl. Phys. Lett., Volume 90 (2007) no. 16, p. 161120

[22] O. Sakai; T. Sakaguchi; K. Tachibana Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two-dimensional array of columnar microplasmas, Appl. Phys. Lett., Volume 87 (2005) no. 24 (241505-1-3)

[23] A. Kallel; J. Sokoloff; T. Callegari Structure planaire à bande interdite électromagnétique reconfigurable par plasma, JCMM2012, Chambéry, France ( 28 March 2012 )

[24] S. Varault; B. Gabard; J. Sokoloff; S. Bolioli Plasma-based localized defect for switchable coupling applications, Appl. Phys. Lett., Volume 98 (2011) no. 13 (134103-1–3)

[25] J. Lo; J. Sokoloff; T. Callegari; J.-P. Bœuf Reconfigurable electromagnetic band gap device using plasma as a localized tunable defect, Appl. Phys. Lett., Volume 96 (2010), p. 251501

[26] L. Giroud; J. Sokoloff; O. Pigaglio Reconfigurable Ebg at 18 GHz using perimeter defects, J. Electromagn. Waves Appl., Volume 23 (2009), pp. 1029-1037

[27] J. Lo Etude de la reconfigurabilité d'une structure à bande interdite électromagnétique (BIE) métallique par plasmas de décharge, Université Paul-Sabatier, Toulouse, 2012 (PhD Thesis)

[28] O. Sakai; K. Tachibana Plasmas as metamaterials: a review, Plasma Sources Sci. Technol., Volume 21 (2012) (013001-1-18)

[29] S. Lim; C. Caloz; Tatsuo Itoh Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth, IEEE Trans. Microw. Theory Tech., Volume 52 (2004) no. 12, pp. 2678-2690

[30] A. Alphones; M. Tsutsumi Leaky wave radiation from a periodically photoexcited semiconductor slab waveguide, IEEE Trans. Microw. Theory Tech., Volume 43 (1995) no. 9, pp. 2435-2441

[31] H. Maheri; M. Tsutsumi; N. Kumagai Experimental studies of magnetically scannable leaky-wave antennas having a corrugated ferrite slab/dielectric layer structure, IEEE Trans. Antennas Propag., Volume 36 (1988) no. 7, pp. 911-917

[32] Y. Yashchyshyn; J.W. Modelski Rigorous analysis and investigations of the scan antennas on a ferroelectric substrate, IEEE Trans. Microw. Theory Tech., Volume 53 (2005) no. 2, pp. 427-438

[33] T. Tamir; A.A. Oliner The spectrum of electromagnetic waves guided by a plasma layer, Proc. IEEE, Volume 51 (1963) no. 2, pp. 317-332

[34] T. Tamir; A.A. Oliner The influence of complex waves on the radiation field of a slot-excited plasma layer, IRE Trans. Antennas Propag., Volume 10 (1962), pp. 55-65

[35] http://www.ansoft.com ([Online]. Available: Ansoft Corporation)

[36] A. Kallel; J. Sokoloff; T. Callegari Theory and simulations of a beam-scanning plasma antenna, EuCAP 2013, Gothenburg, Sweden ( 8–12 April 2013 ), pp. 3457-3461

[37] J. Krupka; K. Derzakowski; M. Tobar; J. Hartnett; R.G. Geyer Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures, Meas. Sci. Technol., Volume 10 (1999) no. 5, pp. 387-392

[38] F. Gaboriau, R. Baude, L. Liard, G. J. M Hagelaar, Experimental characterization of the electron transport across a magnetic field barrier, presented at the 65th Annual GEC, Austin, USA, 22–26 October 2012, Austin, USA.

[39] A. Hamiaz; R. Klein; X. Ferrieres; O. Pascal; J.-P. Bœuf; J.-R. Poirier Finite volume time domain modelling of microwave breakdown and plasma formation in a metallic aperture, Comput. Phys. Commun., Volume 183 (2013) no. 8, pp. 1634-1640

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

An overview of metasurfaces for thin antenna applications

Massimiliano Casaletti; Guido Valerio; Oscar Quevedo-Teruel; ...

C. R. Phys (2020)


Directive metamaterial-based subwavelength resonant cavity antennas – Applications for beam steering

Abdelwaheb Ourir; Shah Nawaz Burokur; Riad Yahiaoui; ...

C. R. Phys (2009)


Metamaterials for optical and radio communications

Boubacar Kante; Abdelwaheb Ourir; Shah Nawaz Burokur; ...

C. R. Phys (2008)