[Rayons cosmiques du genou à la cheville]
La forme et la composition du spectre des primaires ainsi que les anisotropies à grande échelle dans la distribution d'arrivée des rayons cosmiques sont des éléments clés pour comprendre l'origine, l'accélération et la propagation du rayonnement galactique. En dehors des particularités spectrales bien connues que sont le genou et la cheville, la mesure du spectre en énergie révèle également, entre ces deux particularités, une déviation claire, bien que moins prononcée, par rapport à une loi de puissance unique : le spectre se durcit jusqu'à
The shape and composition of the primary spectrum as well as the large-scale anisotropy in the arrival direction of cosmic rays are key elements to understand the origin, acceleration and propagation of the Galactic radiation. Besides the well-known knee and ankle features, the measured energy spectrum exhibits also a less pronounced but still clear deviation from a single power law between the knee and the ankle, with a spectral hardening at
Mots-clés : Rayons cosmiques, Spectre en énergie, Composition en masse, Anisotropies, Genou, Cheville
Mario Edoardo Bertaina 1
@article{CRPHYS_2014__15_4_300_0, author = {Mario Edoardo Bertaina}, title = {Cosmic rays from the knee to the ankle}, journal = {Comptes Rendus. Physique}, pages = {300--308}, publisher = {Elsevier}, volume = {15}, number = {4}, year = {2014}, doi = {10.1016/j.crhy.2014.03.001}, language = {en}, }
Mario Edoardo Bertaina. Cosmic rays from the knee to the ankle. Comptes Rendus. Physique, Ultra-high-energy cosmic rays: From the ankle to the tip of the spectrum, Volume 15 (2014) no. 4, pp. 300-308. doi : 10.1016/j.crhy.2014.03.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.03.001/
[1] Astrophys. J., 742 (2011), p. L30
[2] Science, 339 (2013), p. 807
[3] J. Phys. G, Nucl. Part. Phys., 31 (2005), p. R95
[4] arXiv
, 2013 |[5] Il Nuovo Cimento, 22 (1961), p. 800
[6] Phys. Rev. D, 74 (2006), p. 043005
[7] , Planets, Stars and Stellar Systems, vol. 5, 2012
[8] J. Phys. Soc. Jpn. Suppl. A, 78 (2009), p. 210
[9] Astrophys. J., 602 (2004), p. 914
[10] Astropart. Phys., 19 (2003), p. 329
[11] Astropart. Phys., 21 (2004), p. 223
[12] Phys. Rev. D, 85 (2012), p. 092005
[13] Astrophys. J., 728 (2011), p. 122
[14] et al., 1998 (Report FZKA 6019)
[15] J. Exp. Theor. Phys., 35 (1958), p. 635
[16] J. Phys. G, 18 (1992), p. 423
[17] Astropart. Phys., 10 (1999), p. 291
[18] Astropart. Phys., 10 (1999), p. 1
[19] Astropart. Phys., 21 (2004), p. 583
[20] Astropart. Phys., 20 (2004), p. 641
[21] Astropart. Phys., 24 (2005), p. 1
[22] Phys. Lett. B, 632 (2006), p. 58
[23] Astropart. Phys., 28 (2007), p. 169
[24] J. Phys. G, Nucl. Part. Phys., 39 (2012), p. 025201
[25] Astropart. Phys., 15 (2001), p. 49
[26] Astron. Astrophys., 359 (2000), p. 682
[27] New J. Phys., 11 (2009), p. 065008
[28] Astropart. Phys., 50–52 (2013), p. 18
[29] Prog. Theor. Phys. Suppl., 193 (2012), p. 204
[30] J. Phys. G, Nucl. Part. Phys., 11 (2008), p. 115201
[31] 33rd ICRC, 2013, p. #0617
[32] Phys. Rev. D, 88 (2013), p. 042004
[33] Astrophys. J., 678 (2008), p. 1165
[34] Astropart. Phys., 36 (2012), p. 183
[35] Adv. Space Res. (2013) | DOI
[36] Astropart. Phys., 47 (2013), p. 54
[37] Nucl. Instrum. Methods A, 620 (2010), p. 202
[38] Nucl. Instrum. Methods A, 692 (2012), p. 98
[39] Nucl. Instrum. Methods A, 700 (2013), p. 188
[40] Nucl. Phys. B, Proc. Suppl., 165 (2007), p. 74
[41] et al. Phys. Rev. D, 46 (1992), p. 5013
[42] et al. Phys. Rev. D, 74 (2006), p. 014026/1
[43] Astropart. Phys., 35 (2012), p. 801
[44] et al. Phys. Rev. C, 74 (2006), p. 044902/1
[45] Astrophys. Space Sci. Trans., 7 (2011), p. 229
[46] J. Phys. G, 34 (2007), p. R359
[47] Astropart. Phys., 12 (1999), p. 19
[48] 33rd ICRC, 2013, p. #0092
[49] Phys. Rev. Lett., 107 (2011), p. 171104
[50] Phys. Rev. D, 87 (2013), p. 081101(R)
[51] arXiv
, 2013 |[52] Astropart. Phys., 35 (2012), p. 660
[53] J. Phys. Conf. Ser., 409 (2013), p. 012039
[54] Phys. Rev. Lett., 101 (2008), p. 221101
[55] Astrophys. J. Lett., 692 (2009), p. L130
[56] Astrophys. J. Lett., 718 (2010), p. L194
[57] Science, 314 (2006), p. 439
[58] arXiv
, 2013 |[59] Phys. Rev., 47 (1935), p. 817
[60] 33rd ICRC, 2013, p. #0093
[61] et al. Astrophys. J., 738 (2011), p. 67
[62] Astropart. Phys., 34 (2011), p. 627
[63] Astrophys. J., 452 (1995), p. L1
[64] Astropart. Phys., 39–40 (2012), p. 33
[65] Nucl. Instrum. Methods, 523 (2004), p. 50
[66] Nucl. Instrum. Methods A, 689 (2012), p. 87
[67] 32nd ICRC, 2011, p. #0761
[68] 32nd ICRC, 2011, p. #0742
[69] et al. Auger Collaboration, 2013 | arXiv
- Ultra high energy cosmic rays The intersection of the Cosmic and Energy Frontiers, Astroparticle Physics, Volume 147 (2023) | DOI:10.1016/j.astropartphys.2022.102794
- Ultra high energy cosmic rays The intersection of the Cosmic and Energy Frontiers, Astroparticle Physics, Volume 149 (2023) | DOI:10.1016/j.astropartphys.2023.102819
- Scaling violation in interaction of cosmic ray hadrons and the nature of the 3 PeV knee in the spectrum of primary cosmic rays, Journal of Physics G: Nuclear and Particle Physics, Volume 48 (2021) no. 12 | DOI:10.1088/1361-6471/ac2e58
- Cosmic Ray Mass Composition Problem: Toward Model-Independent Evaluation Based on the Analysis of the Spatial Structure of EAS Charged Components, Physics of Atomic Nuclei, Volume 84 (2021) no. 6, pp. 995-1006 | DOI:10.1134/s1063778821130275
- Features of the Energy Spectrum of Cosmic Rays above 2.5 ×1018 eV Using the Pierre Auger Observatory, Physical Review Letters, Volume 125 (2020) no. 12 | DOI:10.1103/physrevlett.125.121106
- Closing in on the origin of Galactic cosmic rays using multimessenger information, Physics Reports, Volume 872 (2020), pp. 1-98 | DOI:10.1016/j.physrep.2020.05.002
- , Journal of Physics: Conference Series, Volume 1181 (2019) no. 1 | DOI:10.1088/1742-6596/1181/1/012032
- Improving the accuracy of cosmic ray mass composition estimation using the scale factor of the electron lateral distribution in air showers, Bulletin of the Russian Academy of Sciences: Physics, Volume 81 (2017) no. 4, pp. 450-452 | DOI:10.3103/s1062873817040360
- , ISVHECRI 2016 - XIX International Symposium on Very High Energy Cosmic Ray Interactions, Moscow (LPI RAS), Russia, Edited by Pattison, B.; EPJ Web of Conferences, Volume 145 (2017) | DOI:10.1051/epjconf/201714519014
- , ISVHECRI 2016 - XIX International Symposium on Very High Energy Cosmic Ray Interactions, Moscow (LPI RAS), Russia, Edited by Pattison, B.; EPJ Web of Conferences, Volume 145 (2017) | DOI:10.1051/epjconf/201714519009
- , Journal of Physics: Conference Series, Volume 632 (2015) no. 1 | DOI:10.1088/1742-6596/632/1/012093
Cité par 11 documents. Sources : NASA ADS
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier