Comptes Rendus
Ultra-high-energy cosmic rays / Rayons cosmiques de ultra-haute énergie
Cosmic rays from the knee to the ankle
[Rayons cosmiques du genou à la cheville]
Comptes Rendus. Physique, Volume 15 (2014) no. 4, pp. 300-308.

La forme et la composition du spectre des primaires ainsi que les anisotropies à grande échelle dans la distribution d'arrivée des rayons cosmiques sont des éléments clés pour comprendre l'origine, l'accélération et la propagation du rayonnement galactique. En dehors des particularités spectrales bien connues que sont le genou et la cheville, la mesure du spectre en énergie révèle également, entre ces deux particularités, une déviation claire, bien que moins prononcée, par rapport à une loi de puissance unique : le spectre se durcit jusqu'à 2×1016 eV et tombe ensuite à partir de 1017 eV. La composition en masse, quant à elle, devient plus lourde après le genou, et ce jusqu'à 1017 eV, valeur à partir de laquelle elle chute rapidement. Un durcissement de la composante légère au-dessus de 1017 eV a aussi été mesuré. De premières indications d'anisotropies dans les mesures des directions d'arrivée depuis l'hémisphère sud ont été rapportées à 1015 eV.

The shape and composition of the primary spectrum as well as the large-scale anisotropy in the arrival direction of cosmic rays are key elements to understand the origin, acceleration and propagation of the Galactic radiation. Besides the well-known knee and ankle features, the measured energy spectrum exhibits also a less pronounced but still clear deviation from a single power law between the knee and the ankle, with a spectral hardening at 2×1016 eV and a steepening at 1017 eV. The average mass composition gets heavier after the knee till 1017 eV, where a bending of the heavy component is observed. An indication of a hardening of the light component just above 1017 eV has been measured as well. First indications of anisotropy of the arrival direction in the southern hemisphere have been reported at 1015 eV.

Publié le :
DOI : 10.1016/j.crhy.2014.03.001
Keywords: Cosmic rays, Energy spectrum, Mass composition, Anisotropy, Knee, Ankle
Mot clés : Rayons cosmiques, Spectre en énergie, Composition en masse, Anisotropies, Genou, Cheville
Mario Edoardo Bertaina 1

1 Department of Physics, University of Torino, Via Pietro Giuria, 1, 10125 Torino, Italy
@article{CRPHYS_2014__15_4_300_0,
     author = {Mario Edoardo Bertaina},
     title = {Cosmic rays from the knee to the ankle},
     journal = {Comptes Rendus. Physique},
     pages = {300--308},
     publisher = {Elsevier},
     volume = {15},
     number = {4},
     year = {2014},
     doi = {10.1016/j.crhy.2014.03.001},
     language = {en},
}
TY  - JOUR
AU  - Mario Edoardo Bertaina
TI  - Cosmic rays from the knee to the ankle
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 300
EP  - 308
VL  - 15
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crhy.2014.03.001
LA  - en
ID  - CRPHYS_2014__15_4_300_0
ER  - 
%0 Journal Article
%A Mario Edoardo Bertaina
%T Cosmic rays from the knee to the ankle
%J Comptes Rendus. Physique
%D 2014
%P 300-308
%V 15
%N 4
%I Elsevier
%R 10.1016/j.crhy.2014.03.001
%G en
%F CRPHYS_2014__15_4_300_0
Mario Edoardo Bertaina. Cosmic rays from the knee to the ankle. Comptes Rendus. Physique, Volume 15 (2014) no. 4, pp. 300-308. doi : 10.1016/j.crhy.2014.03.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.03.001/

[1] A. Giuliani; et al.; AGILE Collaboration Astrophys. J., 742 (2011), p. L30

[2] M. Ackermann; et al.; FERMI-LAT Collaboration Science, 339 (2013), p. 807

[3] A.M. Hillas J. Phys. G, Nucl. Part. Phys., 31 (2005), p. R95

[4] T.K. Gaisser; T. Stanev; S. Tilav, 2013 | arXiv

[5] B. Peters Il Nuovo Cimento, 22 (1961), p. 800

[6] V. Berezinsky; A. Gazizov; S. Grigorieva Phys. Rev. D, 74 (2006), p. 043005

[7] A. Castellina; F. Donato, Planets, Stars and Stellar Systems, vol. 5, 2012

[8] M. Bertaina J. Phys. Soc. Jpn. Suppl. A, 78 (2009), p. 210

[9] T. Antoni; et al.; KASCADE Collaboration Astrophys. J., 602 (2004), p. 914

[10] M. Aglietta; et al.; EAS-TOP Collaboration Astropart. Phys., 19 (2003), p. 329

[11] M. Aglietta; et al.; EAS-TOP Collaboration Astropart. Phys., 21 (2004), p. 223

[12] B. Bartoli; et al.; ARGO Collaboration Phys. Rev. D, 85 (2012), p. 092005

[13] Y.S. Yoon; et al.; CREAM Collaboration Astrophys. J., 728 (2011), p. 122

[14] D. Heck et al., 1998 (Report FZKA 6019)

[15] G.V. Kulikov; G.B. Khristiansen J. Exp. Theor. Phys., 35 (1958), p. 635

[16] M. Nagano; et al.; AKENO Collaboration J. Phys. G, 18 (1992), p. 423

[17] M.A.K. Glasmacher; et al.; CASA-MIA Collaboration Astropart. Phys., 10 (1999), p. 291

[18] M. Aglietta; et al.; EAS-TOP Collaboration Astropart. Phys., 10 (1999), p. 1

[19] M. Aglietta; et al.; EAS-TOP Collaboration Astropart. Phys., 21 (2004), p. 583

[20] M. Aglietta; et al.; EAS-TOP Collaboration Astropart. Phys., 20 (2004), p. 641

[21] T. Antoni; et al.; KASCADE Collaboration Astropart. Phys., 24 (2005), p. 1

[22] M. Amenomori; et al.; TIBET-As Phys. Lett. B, 632 (2006), p. 58

[23] A.P. Garyaka; et al.; GAMMA Collaboration Astropart. Phys., 28 (2007), p. 169

[24] H. Tanaka; et al.; GRAPES Collaboration J. Phys. G, Nucl. Part. Phys., 39 (2012), p. 025201

[25] J.W. Fowler; et al.; CASA-BLANCA Collaboration Astropart. Phys., 15 (2001), p. 49

[26] F. Arqueros; et al.; HEGRA Collaboration Astron. Astrophys., 359 (2000), p. 682

[27] A.A. Ivanov; S.P. Knurenko; I.Y. Sleptsov; Yakutsk Collaboration New J. Phys., 11 (2009), p. 065008

[28] N. Budnev; et al.; TUNKA-25 Collaboration Astropart. Phys., 50–52 (2013), p. 18

[29] S. Ostapchenko Prog. Theor. Phys. Suppl., 193 (2012), p. 204

[30] A.P. Garyaka; et al.; GAMMA Collaboration J. Phys. G, Nucl. Part. Phys., 11 (2008), p. 115201

[31] V.V. Prosin; et al.; TUNKA-133 Collaboration 33rd ICRC, 2013, p. #0617

[32] M.G. Aartsen; et al.; ICE-TOP Collaboration Phys. Rev. D, 88 (2013), p. 042004

[33] M. Amenomori; et al.; TIBET-As Astrophys. J., 678 (2008), p. 1165

[34] W.D. Apel; et al.; KASCADE-Grande Collaboration Astropart. Phys., 36 (2012), p. 183

[35] W.D. Apel; KASCADE-Grande Collaboration Adv. Space Res. (2013) | DOI

[36] W.D. Apel; et al.; KASCADE-Grande Collaboration Astropart. Phys., 47 (2013), p. 54

[37] W.D. Apel; et al.; KASCADE-Grande Collaboration Nucl. Instrum. Methods A, 620 (2010), p. 202

[38] S.F. Berezhnev; et al.; Tunka-133 Collaboration Nucl. Instrum. Methods A, 692 (2012), p. 98

[39] R. Abbasi; et al.; IceTop Collaboration Nucl. Instrum. Methods A, 700 (2013), p. 188

[40] E.E. Korolsteva; et al.; QUEST Collaboration Nucl. Phys. B, Proc. Suppl., 165 (2007), p. 74

[41] J. Engel et al. Phys. Rev. D, 46 (1992), p. 5013

[42] S. Ostapchenko et al. Phys. Rev. D, 74 (2006), p. 014026/1

[43] T. Gaisser Astropart. Phys., 35 (2012), p. 801

[44] K. Werner et al. Phys. Rev. C, 74 (2006), p. 044902/1

[45] M. Bertaina; et al.; KASCADE-Grande Collaboration Astrophys. Space Sci. Trans., 7 (2011), p. 229

[46] D.R. Bergman; J.W. Belz J. Phys. G, 34 (2007), p. R359

[47] V. Bakatanov; et al.; BAKSAN Collaboration Astropart. Phys., 12 (1999), p. 19

[48] A. Chiavassa; et al.; KASCADE-Grande Collaboration 33rd ICRC, 2013, p. #0092

[49] W.D. Apel; et al.; KASCADE-Grande Collaboration Phys. Rev. Lett., 107 (2011), p. 171104

[50] W.D. Apel; et al.; KASCADE-Grande Collaboration Phys. Rev. D, 87 (2013), p. 081101(R)

[51] A. Tamburro; et al.; IceCube Collaboration, 2013 | arXiv

[52] K.-H. Kampert; M. Unger Astropart. Phys., 35 (2012), p. 660

[53] R. Iuppa; et al.; ARGO Collaboration J. Phys. Conf. Ser., 409 (2013), p. 012039

[54] A. Abdo; et al.; MILAGRO Collaboration Phys. Rev. Lett., 101 (2008), p. 221101

[55] M. Aglietta; et al.; EAS-TOP Collaboration Astrophys. J. Lett., 692 (2009), p. L130

[56] R. Abbasi; et al.; IceCube Collaboration Astrophys. J. Lett., 718 (2010), p. L194

[57] M. Amenomori; et al.; TIBET-AS Science, 314 (2006), p. 439

[58] P. Desiati; et al.; IceCube Collaboration, 2013 | arXiv

[59] A.H. Compton; I.A. Getting Phys. Rev., 47 (1935), p. 817

[60] A. Chiavassa; et al.; KASCADE-Grande Collaboration 33rd ICRC, 2013, p. #0093

[61] R. Bonino et al. Astrophys. J., 738 (2011), p. 67

[62] P. Abreu; et al.; Auger Collaboration Astropart. Phys., 34 (2011), p. 627

[63] E. Waxman Astrophys. J., 452 (1995), p. L1

[64] D. Allard Astropart. Phys., 39–40 (2012), p. 33

[65] J. Abraham; et al.; Auger Collaboration Nucl. Instrum. Methods, 523 (2004), p. 50

[66] T. Abu-Zayyad; et al.; TA Collaboration Nucl. Instrum. Methods A, 689 (2012), p. 87

[67] T.H.-J. Mathes; et al.; Auger Collaboration 32nd ICRC, 2011, p. #0761

[68] F. Sanchez; et al.; Auger Collaboration 32nd ICRC, 2011, p. #0742

[69] A. Aab et al. Auger Collaboration, 2013 | arXiv

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Experimental results: an update

Ralph Engel; Hans Klages

C. R. Phys (2004)


Cosmic rays from the ankle to the cutoff

Karl-Heinz Kampert; Peter Tinyakov

C. R. Phys (2014)


Cosmic rays around 1018 eV: Implications of contemporary measurements on the origin of the ankle feature

Olivier Deligny

C. R. Phys (2014)