Comptes Rendus
Electromagnetism in a strongly stratified plasma showing an unexpected effect of the Debye shielding
[Électromagnétisme dans les plasmas fortement stratifiés : mise en évidence d'un effet inattendu de l'écrantage de Debye]
Comptes Rendus. Physique, Volume 15 (2014) no. 5, pp. 430-440.

Nous avons trouvé dans la littérature 15 références montrant sans exception que, dans la photosphère des taches solaires, le gradient vertical du champ magnétique est de 3–4 G/km, l'intensité du champ décroissant avec l'altitude, tandis que le gradient horizontal est neuf fois plus faible, de l'ordre de 0.4–0.5 G/km. Nos récentes observations THÉMIS confirment ces résultats, dont la conséquence est que l'annulation de divB n'est pas réalisée. Cet article est consacré à l'étude de ce problème. Nous faisons remarquer que la photosphère est un plasma fortement stratifié. Les longueurs caractéristiques horizontale et verticale sont différentes, dans le rapport d'aspect 1/9, de même que les différents termes qui contribuent à la valeur observée de divB. Les vitesses aussi sont anisotropes, et font que le volume de Debye est une sphère aplatie. Nous montrons que, dans ce cas, divB peut mathématiquement être non nul. L'écrantage anisotrope constitue une alternative à l'existence de monopôles magnétiques pour expliquer la non-nullité de divB. Nous montrons qu'au contraire la couronne solaire n'est pas un plasma fortement stratifié et que les conditions y sont très différentes.

In the literature, we found 15 references showing, without exception, that the sunspot photospheric magnetic field vertical gradient is on the order of 3–4 G/km, with field strength decreasing with height, whereas the horizontal gradient is nine times weaker, on the order of 0.4–0.5 G/km. This is confirmed by our recent THÉMIS observations. As a consequence, the vanishing of divB is not realized, and the present paper is devoted to the investigation of this problem. We point out that the photosphere is a strongly stratified plasma, having different horizontal and vertical characteristic lengths of aspect ratio 1/9 as the different terms contributing to the observed divB. The velocities are also anisotropic under the stratification effect. As a consequence, the Debye volume is a flattened sphere. We show that in this case divB may mathematically depart from zero. Anisotropic shielding constitutes an alternative to the existence of monopoles for being responsible for non-zero divB. We evaluate that the solar corona is conversely not a strongly stratified plasma, so that the conditions are very different there.

Publié le :
DOI : 10.1016/j.crhy.2014.03.003
Keywords: Magnetic fields, Magnetohydrodynamics (MHD), Plasmas, Stratified media, Sun: surface magnetism, Sun: photosphere, Sunspots
Mot clés : Champs magnétiques, Magnétohydrodynamique (MHD), Plasmas, Milieux stratifiés, Soleil : magnétisme de surface, Soleil : photosphère, Taches solaires
Véronique Bommier 1

1 LESIA, Observatoire de Paris, CNRS–INSU–UMR8109, UPMC (Université Paris-6), Université Paris-Diderot – Paris-7, 5, place Jules-Janssen, 92190 Meudon, France
@article{CRPHYS_2014__15_5_430_0,
     author = {V\'eronique Bommier},
     title = {Electromagnetism in a strongly stratified plasma showing an unexpected effect of the {Debye} shielding},
     journal = {Comptes Rendus. Physique},
     pages = {430--440},
     publisher = {Elsevier},
     volume = {15},
     number = {5},
     year = {2014},
     doi = {10.1016/j.crhy.2014.03.003},
     language = {en},
}
TY  - JOUR
AU  - Véronique Bommier
TI  - Electromagnetism in a strongly stratified plasma showing an unexpected effect of the Debye shielding
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 430
EP  - 440
VL  - 15
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2014.03.003
LA  - en
ID  - CRPHYS_2014__15_5_430_0
ER  - 
%0 Journal Article
%A Véronique Bommier
%T Electromagnetism in a strongly stratified plasma showing an unexpected effect of the Debye shielding
%J Comptes Rendus. Physique
%D 2014
%P 430-440
%V 15
%N 5
%I Elsevier
%R 10.1016/j.crhy.2014.03.003
%G en
%F CRPHYS_2014__15_5_430_0
Véronique Bommier. Electromagnetism in a strongly stratified plasma showing an unexpected effect of the Debye shielding. Comptes Rendus. Physique, Volume 15 (2014) no. 5, pp. 430-440. doi : 10.1016/j.crhy.2014.03.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.03.003/

[1] S.K. Solanki Sunspots: an overview, Astron. Astrophys. Rev., Volume 11 (2003), pp. 153-286 | DOI

[2] C.W. Allen Astrophysical Quantities, The Athlone Press, University of London, 1973

[3] C. Westendorp Plaza; J.C. del Toro Iniesta; B. Ruiz Cobo; V. Martínez Pillet; B.W. Lites; A. Skumanich Optical tomography of a sunspot. II. Vector magnetic field and temperature stratification, Astrophys. J., Volume 547 (2001), pp. 1130-1147 | DOI

[4] H. Balthasar; W. Schmidt Polarimetry and spectroscopy of a simple sunspot. 2: On the height and temperature dependence of the magnetic field, Astron. Astrophys., Volume 279 (1993), pp. 243-250

[5] W. Schmidt; H. Balthasar Polarimetry and spectroscopy of a simple sunspot. 3: Velocity and magnetic field of sunspot umbral dots, Astron. Astrophys., Volume 283 (1994), pp. 241-246

[6] K.-D. Pahlke; E. Wiehr Magnetic field, relative Doppler shift and temperature for an inhomogeneous model of sunspot umbrae, Astron. Astrophys., Volume 228 (1990), pp. 246-252

[7] M. Collados; V. Martinez Pillet; B. Ruiz Cobo; J.C. del Toro Iniesta; M. Vazquez Observed differences between large and small sunspots, Astron. Astrophys., Volume 291 (1994), pp. 622-634

[8] J.H.M.J. Bruls; S.K. Solanki; R.J. Rutten; M. Carlsson Infrared lines as probes of solar magnetic features. VIII. MgI 12 μm diagnostics of sunspots, Astron. Astrophys., Volume 293 (1995), pp. 225-239

[9] S.K. Mathew; A. Lagg; S.K. Solanki; M. Collados; J.M. Borrero; S. Berdyugina; N. Krupp; J. Woch; C. Frutiger Three dimensional structure of a regular sunspot from the inversion of IR Stokes profiles, Astron. Astrophys., Volume 410 (2003), pp. 695-710 | DOI

[10] A. Berlicki; P. Mein; B. Schmieder THEMIS/MSDP magnetic field measurements, Astron. Astrophys., Volume 445 (2006), pp. 1127-1132 | DOI

[11] H. Balthasar Vertical current densities and magnetic gradients in sunspots, Astron. Astrophys., Volume 449 (2006), pp. 1169-1176 | DOI

[12] M.J. Hagyard; D. Teuber; E.A. West; E. Tandberg-Hanssen; W. Henze; J.M. Beckers; M. Bruner; C.L. Hyder; B.E. Woodgate Vertical gradients of sunspot magnetic fields, Sol. Phys., Volume 84 (1983), pp. 13-31 | DOI

[13] Y. Liu; J. Wang; Y. Yan; G. Ai Gradients of the line-of-sight magnetic fields in active region NOAA 6659, Sol. Phys., Volume 169 (1996), pp. 79-89 | DOI

[14] H. Balthasar; M. Collados Some properties of an isolated sunspot, Astron. Astrophys., Volume 429 (2005), pp. 705-711 | DOI

[15] M. Landolfi; E. Landi Degl'Innocenti; P. Arena On the diagnostic of magnetic fields in sunspots through the interpretation of Stokes parameters profiles, Sol. Phys., Volume 93 (1984), pp. 269-287 | DOI

[16] V. Bommier; E. Landi Degl'Innocenti; M. Landolfi; G. Molodij UNNOFIT inversion of spectro-polarimetric maps observed with THEMIS, Astron. Astrophys., Volume 464 (2007), pp. 323-339 | DOI

[17] W. Unno Line formation of a normal Zeeman triplet, Publ. Astron. Soc. Jpn., Volume 8 (1956), p. 108

[18] D.N. Rachkovsky Izv. Ordena Trudovogo Krasnogo Znameni Krym. Astrofiz. Obs., 27 (1962), p. 148

[19] D.N. Rachkovsky Izv. Ordena Trudovogo Krasnogo Znameni Krym. Astrofiz. Obs., 37 (1967), p. 56

[20] M. Faurobert; C. Aime; C. Périni; H. Uitenbroek; C. Grec; J. Arnaud; G. Ricort Direct measurement of the formation height difference of the 630 nm Fe I solar lines, Astron. Astrophys., Volume 507 (2009), p. L29-L32 | DOI

[21] C. Grec; H. Uitenbroek; M. Faurobert; C. Aime Measuring line formation depths by cross-spectral analysis. Numerical simulations for the 630 nm Fe I line pair, Astron. Astrophys., Volume 514 (2010), p. A91 | DOI

[22] E. Khomenko; M. Collados On the Stokes V amplitude ratio as an indicator of the field strength in the solar internetwork, Astrophys. J., Volume 659 (2007), pp. 1726-1735 | DOI

[23] M.T. Eibe; G. Aulanier; M. Faurobert; P. Mein; J.M. Malherbe Vertical structure of sunspots from THEMIS observations, Astron. Astrophys., Volume 381 (2002), pp. 290-299 | DOI

[24] M. Carlsson A computer program for solving multi-level non-LTE radiative transfer problems in moving or static atmospheres, Uppsala Astronomical Observatory, 1986 (Tech. Rep. Report No 33)

[25] P. Demoulin; L.G. Bagala; C.H. Mandrini; J.C. Henoux; M.G. Rovira Quasi-separatrix layers in solar flares. II. Observed magnetic configurations, Astron. Astrophys., Volume 325 (1997), pp. 305-317

[26] V.J. Pizzo Numerical solution of the magnetostatic equations for thick flux tubes, with application to sunspots, pores, and related structures, Astrophys. J., Volume 302 (1986), pp. 785-808 | DOI

[27] K.G. Puschmann; B. Ruiz Cobo; V. Martínez Pillet A geometrical height scale for sunspot penumbrae, Astrophys. J., Volume 720 (2010), pp. 1417-1431 | arXiv | DOI

[28] B. Ruiz Cobo; J.C. del Toro Iniesta Inversion of Stokes profiles, Astrophys. J., Volume 398 (1992), pp. 375-385 | DOI

[29] J. Sanchez Almeida Optically thin irregularities in the penumbrae of sunspots, Astrophys. J., Volume 497 (1998), p. 967 | DOI

[30] B. Dubrulle; U. Frisch Eddy viscosity of parity-invariant flow, Phys. Rev. A, Volume 43 (1991), pp. 5355-5364 | DOI

[31] J.H.M.J. Bruls; B.W. Lites; G.A. Murphy Non-LTE formation heights of Stokes profiles of Fe I lines, 27–31 August 1990 (L.J. November, ed.) (1991), pp. 444-456

[32] N. Meyer-Vernet Aspects of Debye shielding, Am. J. Phys., Volume 61 (1993), pp. 249-257 | DOI

[33] G. Brethouwer; P. Billant; E. Lindborg; J.-M. Chomaz Scaling analysis and simulation of strongly stratified turbulent flows, J. Fluid Mech., Volume 585 (2007), p. 343 | DOI

[34] P. Augier Turbulence en milieu stratifié, Étude expérimentale et rôle de l'instabilité zigzag, École Normale Supérieure de Lyon, 2008 www.ens-lyon.fr/DSM/SDMsite/M2/stages_M2/Augier.pdf (Master's Thesis)

[35] J.E. Vernazza; E.H. Avrett; R. Loeser Structure of the solar chromosphere. III – Models of the EUV brightness components of the quiet-sun, Astrophys. J. Suppl. Ser., Volume 45 (1981), pp. 635-725 | DOI

[36] V. Bommier; M. Derouich; E. Landi Degl'Innocenti; G. Molodij; S. Sahal-Bréchot Interpretation of second solar spectrum observations of the Sr I 4607 Å line in a quiet region: turbulent magnetic field strength determination, Astron. Astrophys., Volume 432 (2005), pp. 295-305 | DOI

[37] N. Meyer-Vernet Basics of the Solar Wind, Cambridge Atmospheric and Space Science Series, Cambridge University Press, 2007

[38] R. Godoy-Diana; J.-M. Chomaz; P. Billant Vertical length scale selection for pancake vortices in strongly stratified viscous fluids, J. Fluid Mech., Volume 504 (2004), pp. 229-238 | DOI

[39] V. Bommier The quiet Sun magnetic field: statistical description from THEMIS observations, Astron. Astrophys., Volume 530 (2011), p. A51 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Solar forcing of the terrestrial atmosphere

Thierry Dudok de Wit; Jürgen Watermann

C. R. Géos (2010)


Soil porosity resulting from the assemblage of silt grains with a clay phase: New perspectives related to utilization of X-ray synchrotron computed microtomography

Olivier Rozenbaum; Ary Bruand; Emmanuel Le Trong

C. R. Géos (2012)


Physical mechanisms of bacterial survival revealed by combined grazing-incidence X-ray scattering and Monte Carlo simulation

Rafael G. Oliveira; Emanuel Schneck; Bonnie E. Quinn; ...

C. R. Chim (2009)