The understanding of wave propagation in turbulent magnetized plasmas can be rather complex, particularly if they are inhomogeneous and time-dependent. Simulation can be a useful tool for wave propagation studies, provided that the “model” equations take into account the characteristics of the medium relevant for the studied problem and that the numerical scheme including boundary conditions is stable and accurate enough. The choices for the model equations and the corresponding schemes are analyzed and discussed as a function of various parameters, such as the order of the numerical scheme and the number of grid points per wavelength. A quick review of the up-to-date numerical developments is given on the sheath boundary conditions and on the perfect matching layer in anisotropic media. Possible developments of plasma diagnostics conclude this state-of-the-art of simulations of electromagnetic waves in plasmas.
Comprendre dans les plasmas les mécanismes régissant la propagation des ondes peut s'avérer complexe, en particulier s' ils sont magnétisés, donc anisotropes et turbulents, donc diffusifs, voire inhomogènes et non stationnaires. La simulation d'un type de plasma avec ses caractéristiques propres passe d'abord par un choix adapté d'équations, suivi par celui d'un schéma numérique accompagné de conditions aux limites spécifiques répondant aux contraintes du problème étudié. Nous discuterons l'impact de ces choix sur la qualité des évaluations numériques en fonction de l'ordre du schéma numérique et du nombre de points de grille par longueur d'onde. Une brève revue des sujets d'intérêt portant sur des conditions de bord de type « gaine » et « transparent » en milieu anisotrope est réalisée, et une discussion sur la propagation en plasmas turbulents appliquée, entre autres, aux développements de diagnostics conclut cet instantané sur les travaux actuels.
Mots-clés : Plasma, Ondes, Simulation, Chauffage, Diagnostic
Stéphane Heuraux 1; Éric Faudot 1; Filipe da Silva 2; Jonathan Jacquot 3; Laurent Colas 3; Sébastien Hacquin 3; Natalia Teplova 4; Kate Syseova 4; Evgeniy Gusakov 4
@article{CRPHYS_2014__15_5_421_0, author = {St\'ephane Heuraux and \'Eric Faudot and Filipe da Silva and Jonathan Jacquot and Laurent Colas and S\'ebastien Hacquin and Natalia Teplova and Kate Syseova and Evgeniy Gusakov}, title = {Study of wave propagation in various kinds of plasmas using adapted simulation methods, with illustrations on possible future applications}, journal = {Comptes Rendus. Physique}, pages = {421--429}, publisher = {Elsevier}, volume = {15}, number = {5}, year = {2014}, doi = {10.1016/j.crhy.2014.04.004}, language = {en}, }
TY - JOUR AU - Stéphane Heuraux AU - Éric Faudot AU - Filipe da Silva AU - Jonathan Jacquot AU - Laurent Colas AU - Sébastien Hacquin AU - Natalia Teplova AU - Kate Syseova AU - Evgeniy Gusakov TI - Study of wave propagation in various kinds of plasmas using adapted simulation methods, with illustrations on possible future applications JO - Comptes Rendus. Physique PY - 2014 SP - 421 EP - 429 VL - 15 IS - 5 PB - Elsevier DO - 10.1016/j.crhy.2014.04.004 LA - en ID - CRPHYS_2014__15_5_421_0 ER -
%0 Journal Article %A Stéphane Heuraux %A Éric Faudot %A Filipe da Silva %A Jonathan Jacquot %A Laurent Colas %A Sébastien Hacquin %A Natalia Teplova %A Kate Syseova %A Evgeniy Gusakov %T Study of wave propagation in various kinds of plasmas using adapted simulation methods, with illustrations on possible future applications %J Comptes Rendus. Physique %D 2014 %P 421-429 %V 15 %N 5 %I Elsevier %R 10.1016/j.crhy.2014.04.004 %G en %F CRPHYS_2014__15_5_421_0
Stéphane Heuraux; Éric Faudot; Filipe da Silva; Jonathan Jacquot; Laurent Colas; Sébastien Hacquin; Natalia Teplova; Kate Syseova; Evgeniy Gusakov. Study of wave propagation in various kinds of plasmas using adapted simulation methods, with illustrations on possible future applications. Comptes Rendus. Physique, Electromagnetism / Électromagnétisme, Volume 15 (2014) no. 5, pp. 421-429. doi : 10.1016/j.crhy.2014.04.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.04.004/
[1] Relativistic effects on reconstruction of density profiles via reflectometry in ITER and potential for electron temperature measurements, Plasma Phys. Control. Fusion, Volume 49 (2007), pp. 1277-1287
[2]
, Cambridge University Press (2002), p. 136[3] et al. Internal magnetic fluctuations and electron heat transport in the Tore Supra tokamak: observation by cross-polarisation scattering, Nucl. Fusion, Volume 38 (1998), pp. 903-918
[4] Comparison of density fluctuation measurements between O-mode and X-mode reflectometry on Tore Supra, Rev. Sci. Instrum., Volume 77 (2006), p. 10E928
[5] Numerical advances in kernels for FDTD Maxwell codes using the Yee algorithm http://www.lptp.polytechnique.fr/news/11/Workshop/abstracts/daSilva_ReflectometryWorkshop2013.pdf (in: 11th Int. Reflectometry Workshop 2013, Palaiseau, France, 22–24 April 2013)
[6] et al. A versatile perfect matched layer for wave propagation in cold magnetized plasmas applied to Tore Supra ICRH antenna coupling modeling, Plasma Phys. Control. Fusion (2014) (in press)
[7] Plasma Waves, Ser. Plasma Phys., IOP Science, 2003 (Chapter 2)
[8] Nonlinear regime of Doppler reflectometry in cylindrical plasmas, Plasma Phys. Control. Fusion, Volume 48 (2006), pp. 901-909
[9] Nonlinear regime of Bragg backscattering leading to probing wave trapping and time delay jumps in fast frequency sweep reflectometry, Plasma Phys. Control. Fusion, Volume 51 (2009), p. 065018
[10] High-latitude ionospheric perturbations and gravity waves. 2. Numerical simulations, J. Geophys. Res., Volume 103 (1998), p. 2143
[11] Modeling non-linear plasma–wave interaction at the edge of a tokamak plasma http://www.comsol.fr/cd/direct/conf/2012/papers/10637/12579_meneghini_paper.pdf
[12] Time-domain simulation of nonlinear radiofrequency phenomena, Phys. Plasmas, Volume 20 (2013), p. 012116
[13] Particle-in-cell modeling of relativistic laser–plasma interaction with the adjustable-damping, direct implicit method, J. Comput. Phys., Volume 229 (2010), p. 4781
[14] Kinetic particle-in-cell simulations of asymmetric quasi-parallel mildly relativistic plasma collisions: field and electron dynamics, Int. J. Mod. Phys. D, Volume 19 (2010), p. 707
[15] EM wave transport 2D and 3D investigations, Int. J. Adv. Comput. Sci. Appl., Volume 1 (2010), p. 114
[16] Three-dimensional numerical simulation of a 30 GHz gyrotron resonator with an explicit high-order discontinuous Galerkin based particle-in-cell method, IEEE Trans. Plasma Sci., Volume 40 (2012), p. 1860
[17] Interaction of spatially overlapping standing electromagnetic solitons in plasmas, Phys. Lett. A, Volume 377 (2013), p. 473
[18] High-order, finite-volume methods in mapped coordinates, J. Comput. Phys., Volume 230 (2011), p. 2952
[19] Efficient numerical methods for strongly anisotropic elliptic equations, J. Sci. Comput., Volume 55 (2013), p. 231
[20] Mixed augmented variational formulation (MAVF) for lower hybrid full-wave calculations, AIP Conf. Proc., Volume 1187 (2009), p. 633
[21] B. Després, L.-M. Imbert-Gerard, R. Weder, Hybrid resonance of Maxwell's equations in slab geometry, private communication, 2013.
[22] Ordinary mode reflectometry: modifications of the backscattering and cut-off responses due to shape of localized density fluctuations, Plasma Phys. Control. Fusion, Volume 38 (1996), p. 1915
[23] Recent results on turbulence and MHD activity achieved by reflectometry, Plasma Phys. Control. Fusion, Volume 48 (2006), p. B421
[24] Simulations on wave propagation in fluctuating fusion plasmas for reflectometry applications and new developments, Discrete Contin. Dyn. Syst., Ser. S, Volume 5 (2012), p. 307
[25] et al. Microwave reflectometry diagnostics: present-day systems and challenges for future devices, J. Plasma Fusion Res., Volume 7 (2012), p. 2502055
[26]
, John Wiley & Sons (1999), pp. 240-242[27] A numerical study of forward- and back-scattering signatures on Doppler reflectometry signals, IEEE Trans. Plasma Sci., Volume 38 (2010), p. 2144
[28] 3-D global Earth-ionosphere FDTD model including an anisotropic magnetized plasma ionosphere, IEEE Trans. Antennas Propag., Volume 60 (2012), p. 3246
[29] Numerical analysis of radio-frequency sheath–plasma interactions in the ion cyclotron range of frequencies, Phys. Plasmas, Volume 19 (2012), p. 012508
[30] Variational approach to radiofrequency waves in magnetic fusion devices, Nucl. Fusion, Volume 49 (2009), p. 075033
[31] Numerical modeling of artificial ionospheric layers driven by high-power HF heating, J. Geophys. Res., Volume 117 (2012), p. A10321
[32] Low-frequency responses of a plasma to a large amplitude high-frequency wave polarized on the extraordinary mode, J. Phys. III, Volume 4 (1994), p. 839
[33] 2D modeling of the O–X conversion in toroidal plasmas, Plasma Phys. Control. Fusion, Volume 50 (2008), p. 025003
[34] Three-dimensional mode conversion associated with kinetic Alfven waves http://absimage.aps.org/image/DPP12/MWS_DPP12-2012-000114.pdf
[35] Numerical simulations of a three-wave coupling occurring in the ionospheric plasma, Nonlinear Process. Geophys., Volume 9 (2002), p. 1
[36] et al. Kinematic negative birefringence in fast moving dielectrics, J. Opt. Soc. Am. B, Volume 28 (2011), p. 765
[37] Peaking criterion for rectified potential in front of ICRF antennas in fusion plasma, Phys. Plasmas, Volume 13 (2006), p. 042512
[38] Generation of DC currents by ICRF near fields in the scrape-off layer, J. Nucl. Mater., Volume 415 (2011), p. S1009
[39] Higher-Order Numerical Methods for Transient Wave Equations, Springer, 2002
[40] New high order schemes based on the modified equation technique for solving the wave equation, 2010 (INRIA report No. 7331)
[41] Synthetic diagnostics in the EU–ITM simulation platform, Fusion Sci. Technol., Volume 63 (2013) no. 1
[42] New electromagnetic particle simulation code for the analysis of spacecraft–plasma interaction, Phys. Plasmas, Volume 16 (2009), p. 062904
[43] Radial wave number spectrum of the density fluctuations deduced from phase reflectometry signals, Rev. Sci. Instrum., Volume 74 (2003), p. 1501
[44] Use of dispersive effects for density profile reconstruction from reflectometry measurements alone, Plasma Phys. Control. Fusion, Volume 42 (2000), p. 347
[45] Investigation of dual mode (O–X) correlation reflectometry for determining the magnetic field strength, Plasma Phys. Control. Fusion, Volume 42 (2000), p. 665
[46] Measurement of cross-polarization scattering using ultrashort pulse microwaves, Rev. Sci. Instrum., Volume 72 (2001) no. 1, p. 355
[47] Polarization characteristics of a partially coherent Gaussian shell-model beam in slant atmospheric turbulence, Prog. Electromagn. Res., Volume 121 (2011), p. 453
[48] Polarization changes of pulsars due to wave propagation through magnetospheres, Mon. Not. R. Astron. Soc., Volume 403 (2010), p. 569
[49] Polarization changes in solar radio emission caused by scattering from high-frequency plasma turbulence, Astron. Astrophys., Volume 392 (2002), p. 1089
Cited by Sources:
Comments - Policy