Comptes Rendus
Grand Prix Mergier–Bourdeix 2013 de l'Académie des sciences
The physics of quantum gravity
[La physique de la gravitation quantique]
Comptes Rendus. Physique, Volume 15 (2014) no. 6, pp. 547-552.

Comprendre la physique de la gravitation quantique est un enjeu majeur de la physique moderne. Dans ce texte, nous exposons quelques-unes des raisons en faveur de la quantification de l'interaction gravitationnelle, et nous en décrivons quelques conséquences physiques attendues. Nous discutons les relations remarquables entre amplitudes de diffusion en gravité quantique et théorie de Yang–Mills, ainsi que le rôle de la théorie des cordes comme théorie unificatrice.

Quantum gravity is still very mysterious and far from being well understood. In this text we review the motivations for the quantification of gravity, and some expected physical consequences. We discuss the remarkable relations between scattering processes in quantum gravity and in Yang–Mills theory, and the role of string theory as a unifying theory.

Publié le :
DOI : 10.1016/j.crhy.2014.03.004
Mots clés : Scattering amplitudes, String theory, Quantum gravity

Pierre Vanhove 1, 2

1 Institut de physique théorique, CEA, IPhT & CNRS, URA 2306, 91191 Gif-sur-Yvette, France
2 Institut des hautes études scientifiques, Le Bois-Marie, 35, route de Chartres, 91440 Bures-sur-Yvette, France
@article{CRPHYS_2014__15_6_547_0,
     author = {Pierre Vanhove},
     title = {The physics of quantum gravity},
     journal = {Comptes Rendus. Physique},
     pages = {547--552},
     publisher = {Elsevier},
     volume = {15},
     number = {6},
     year = {2014},
     doi = {10.1016/j.crhy.2014.03.004},
     language = {en},
}
TY  - JOUR
AU  - Pierre Vanhove
TI  - The physics of quantum gravity
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 547
EP  - 552
VL  - 15
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crhy.2014.03.004
LA  - en
ID  - CRPHYS_2014__15_6_547_0
ER  - 
%0 Journal Article
%A Pierre Vanhove
%T The physics of quantum gravity
%J Comptes Rendus. Physique
%D 2014
%P 547-552
%V 15
%N 6
%I Elsevier
%R 10.1016/j.crhy.2014.03.004
%G en
%F CRPHYS_2014__15_6_547_0
Pierre Vanhove. The physics of quantum gravity. Comptes Rendus. Physique, Volume 15 (2014) no. 6, pp. 547-552. doi : 10.1016/j.crhy.2014.03.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.03.004/

[1] F. Englert; R. Brout Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett., Volume 13 (1964), p. 321

[2] P.W. Higgs Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett., Volume 13 (1964), p. 508

[3] G. Aad; et al.; ATLAS Collaboration Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B, Volume 716 (2012), p. 1 | arXiv

[4] S. Chatrchyan; et al.; CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B, Volume 716 (2012), p. 30 | arXiv

[5] The BEH-mechanism, interactions with short range forces and scalar particles. The Nobel prize in physics 2013 – advanced information. Nobelprize.org. Nobel Media AB 2013. Web. 28 Feb 2014, http://www.nobelprize.org/nobel_prizes/physics/laureates/2013/advanced.html.

[6] P.A.R. Ade; et al.; Planck Collaboration Planck 2013 results. I. Overview of products and scientific results | arXiv

[7] O. Lahav; A.R. Liddle The cosmological parameters 2014, contribution to the review of particle physics 2014 | arXiv

[8] J. Beringer; et al.; Particle Data Group Collaboration Review of particle physics (RPP), Phys. Rev. D, Volume 86 (2012) (010001)

[9] M.F. Sohnius Introducing supersymmetry, Phys. Rep., Volume 128 (1985), p. 39

[10] P. Langacker Grand unification, Scholarpedia, Volume 7 (2012) no. 10, p. 11419

[11] J.H. Taylor Binary pulsars and relativistic gravity, Rev. Mod. Phys., Volume 66 (1994), p. 711 (Nobel lecture, 8 December 1993)

[12] A. Einstein Approximative integration of the field equations of gravitation, Sitz.ber. Preuss. Akad. Wiss. Berl. Math. Phys., Volume 1916 (1916), p. 688

[13] C.M. Will The confrontation between general relativity and experiment, Living Rev. Relativ., Volume 4 (2001), p. 4 | arXiv

[14] T. Damour Experimental tests of gravitational theory, contribution to the review of particle physics 2014 http://pdg.lbl.gov/2013/reviews/rpp2013-rev-gravity-tests.pdf

[15] A.D. Sakharov; A.D. Sakharov; A.D. Sakharov; A.D. Sakharov Vacuum quantum fluctuations in curved space and the theory of gravitation, Gen. Relativ. Gravit., Volume 12 (1968), p. 1040

[16] O. Aharony; S.S. Gubser; J.M. Maldacena; H. Ooguri; Y. Oz Large N field theories, string theory and gravity, Phys. Rep., Volume 323 (2000), p. 183 | arXiv

[17] K. Eppley; E. Hannah On the logical necessity of quantizing the gravitational field, Found. Phys., Volume 7 (1977), pp. 51-68

[18] D.N. Page; C.D. Geilker Indirect evidence for quantum gravity, Phys. Rev. Lett., Volume 47 (1981), p. 979

[19] F. Dyson Is a graviton detectable?, Int. J. Mod. Phys. A, Volume 28 (2013) (1330041)

[20] R.P. Feynman Quantum theory of gravitation, Acta Phys. Pol., Volume 24 (1963), p. 697

[21] R.P. Feynman; F.B. Morinigo; W.G. Wagner; B. Hatfield Feynman Lectures on Gravitation, the Advanced Book Program, Addison-Wesley, Reading, USA, 1995 (232 p.)

[22] B.S. DeWitt; B.S. DeWitt; B.S. DeWitt Quantum theory of gravity. 3. Applications of the covariant theory, Phys. Rev., Volume 160 (1967), p. 1113

[23] G. 't Hooft; M.J.G. Veltman One loop divergencies in the theory of gravitation, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 20 (1974), p. 69

[24] M. Ackermann; et al.; Fermi GBM/LAT Collaboration A limit on the variation of the speed of light arising from quantum gravity effects, Nature, Volume 462 (2009), p. 331 | arXiv

[25] F.W. Stecker A new limit on Planck scale Lorentz violation from gamma-ray burst polarization, Astropart. Phys., Volume 35 (2011), p. 95 | arXiv

[26] P. Laurent; D. Gotz; P. Binetruy; S. Covino; A. Fernandez-Soto Constraints on Lorentz invariance violation using INTEGRAL/IBIS observations of GRB041219A, Phys. Rev. D, Volume 83 (2011), p. 121301 | arXiv

[27] P. Van Nieuwenhuizen Supergravity, Phys. Rep., Volume 68 (1981), p. 189

[28] N. Boulanger; T. Damour; L. Gualtieri; M. Henneaux Inconsistency of interacting, multigraviton theories, Nucl. Phys. B, Volume 597 (2001), p. 127 | arXiv

[29] W. Nahm Supersymmetries and their representations, Nucl. Phys. B, Volume 135 (1978), p. 149

[30] E. Cremmer; B. Julia; J. Scherk Supergravity theory in eleven dimensions, Phys. Lett. B, Volume 76 (1978), p. 409

[31] E. Cremmer; B. Julia The N=8 supergravity theory. 1. The Lagrangian, Phys. Lett. B, Volume 80 (1978), p. 48

[32] M.B. Green; J.G. Russo; P. Vanhove Ultraviolet properties of maximal supergravity, Phys. Rev. Lett., Volume 98 (2007) (131602) | arXiv

[33] Z. Bern; J.J.M. Carrasco; L.J. Dixon; H. Johansson; R. Roiban Manifest ultraviolet behavior for the three-loop four-point amplitude of N=8 supergravity, Phys. Rev. D, Volume 78 (2008) (105019) | arXiv

[34] M.B. Green; J.H. Schwarz; E. Witten Superstring Theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, UK, 1987

[35] D. Amati; M. Ciafaloni; G. Veneziano Can space–time be probed below the string size?, Phys. Lett. B, Volume 216 (1989), p. 41

[36] J. Scherk; J.H. Schwarz Dual models for nonhadrons, Nucl. Phys. B, Volume 81 (1974), p. 118

[37] J.F. Donoghue General relativity as an effective field theory: the leading quantum corrections, Phys. Rev. D, Volume 50 (1994), p. 3874 | arXiv

[38] N.E.J. Bjerrum-Bohr; J.F. Donoghue; B.R. Holstein; N.E.J. Bjerrum-Bohr; J.F. Donoghue; B.R. Holstein Quantum gravitational corrections to the nonrelativistic scattering potential of two masses, Phys. Rev. D, Volume 67 (2003) 084033 069903 (Erratum) | arXiv

[39] N.E.J. Bjerrum-Bohr; J.F. Donoghue; P. Vanhove On-shell techniques and universal results in quantum gravity | arXiv

[40] G.F. Giudice; R. Rattazzi; J.D. Wells Quantum gravity and extra dimensions at high-energy colliders, Nucl. Phys. B, Volume 544 (1999), p. 3 | arXiv

[41] G.F. Giudice; R. Rattazzi; J.D. Wells Transplanckian collisions at the LHC and beyond, Nucl. Phys. B, Volume 630 (2002), p. 293 | arXiv

[42] M.E. Peskin; D.V. Schroeder An Introduction to Quantum Field Theory, Addison-Wesley, Reading, USA, 1995 (842 p.)

[43] M.L. Mangano; S.J. Parke Multiparton amplitudes in gauge theories, Phys. Rep., Volume 200 (1991), p. 301 | arXiv

[44] Z. Bern; L.J. Dixon; D.A. Kosower On-shell methods in perturbative QCD, Ann. Phys., Volume 322 (2007), p. 1587 | arXiv

[45] M.B. Green; J.H. Schwarz; L. Brink N=4 Yang–Mills and N=8 supergravity as limits of string theories, Nucl. Phys. B, Volume 198 (1982), p. 474

[46] Z. Bern; D.C. Dunbar; T. Shimada String based methods in perturbative gravity, Phys. Lett. B, Volume 312 (1993), p. 277 | arXiv

[47] N.E.J. Bjerrum-Bohr; P.H. Damgaard; T. Sondergaard; P. Vanhove The momentum kernel of gauge and gravity theories, J. High Energy Phys., Volume 1101 (2011) (001) | arXiv

[48] N.E.J. Bjerrum-Bohr; P.H. Damgaard; B. Feng; T. Sondergaard Gravity and Yang–Mills amplitude relations, Phys. Rev. D, Volume 82 (2010) (107702) | arXiv

[49] H. Kawai; D.C. Lewellen; S.H.H. Tye A relation between tree amplitudes of closed and open strings, Nucl. Phys. B, Volume 269 (1986), p. 1

[50] Z. Bern Perturbative quantum gravity and its relation to gauge theory, Living Rev. Relativ., Volume 5 (2002), p. 5 | arXiv

[51] Z. Bern; J.J.M. Carrasco; H. Johansson Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett., Volume 105 (2010) (061602) | arXiv

[52] B.R. Holstein Graviton physics, Am. J. Phys., Volume 74 (2006), p. 1002 | arXiv

[53] S. Weinberg Infrared photons and gravitons, Phys. Rev., Volume 140 (1965) (B516)

[54] S. Badger; N.E.J. Bjerrum-Bohr; P. Vanhove Simplicity in the structure of QED and gravity amplitudes, J. High Energy Phys., Volume 0902 (2009) (038) | arXiv

[55] Z. Bern; L.J. Dixon; R. Roiban Is N=8 supergravity ultraviolet finite?, Phys. Lett. B, Volume 644 (2007), p. 265 | arXiv

[56] C.M. Hull; P.K. Townsend Unity of superstring dualities, Nucl. Phys. B, Volume 438 (1995), p. 109 | arXiv

[57] M.B. Green; H. Ooguri; J.H. Schwarz Nondecoupling of maximal supergravity from the superstring, Phys. Rev. Lett., Volume 99 (2007) (041601) | arXiv

[58] M.B. Green; J.G. Russo; P. Vanhove Automorphic properties of low energy string amplitudes in various dimensions, Phys. Rev. D, Volume 81 (2010) (086008) | arXiv

[59] M.B. Green; S.D. Miller; P. Vanhove Small representations, string instantons, small representations, string instantons, and Fourier modes of Eisenstein series (with an appendix by D. Ciubotaru and P. Trapa) | arXiv

[60] M.B. Green; J.G. Russo; P. Vanhove String theory dualities and supergravity divergences, J. High Energy Phys., Volume 1006 (2010), p. 75 | arXiv

Cité par Sources :

IPhT-T/13/219, IHES/P/14/08.

Commentaires - Politique