[La physique de la gravitation quantique]
Comprendre la physique de la gravitation quantique est un enjeu majeur de la physique moderne. Dans ce texte, nous exposons quelques-unes des raisons en faveur de la quantification de l'interaction gravitationnelle, et nous en décrivons quelques conséquences physiques attendues. Nous discutons les relations remarquables entre amplitudes de diffusion en gravité quantique et théorie de Yang–Mills, ainsi que le rôle de la théorie des cordes comme théorie unificatrice.
Quantum gravity is still very mysterious and far from being well understood. In this text we review the motivations for the quantification of gravity, and some expected physical consequences. We discuss the remarkable relations between scattering processes in quantum gravity and in Yang–Mills theory, and the role of string theory as a unifying theory.
Pierre Vanhove 1, 2
@article{CRPHYS_2014__15_6_547_0, author = {Pierre Vanhove}, title = {The physics of quantum gravity}, journal = {Comptes Rendus. Physique}, pages = {547--552}, publisher = {Elsevier}, volume = {15}, number = {6}, year = {2014}, doi = {10.1016/j.crhy.2014.03.004}, language = {en}, }
Pierre Vanhove. The physics of quantum gravity. Comptes Rendus. Physique, Volume 15 (2014) no. 6, pp. 547-552. doi : 10.1016/j.crhy.2014.03.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.03.004/
[1] Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett., Volume 13 (1964), p. 321
[2] Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett., Volume 13 (1964), p. 508
[3] Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B, Volume 716 (2012), p. 1 | arXiv
[4] Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B, Volume 716 (2012), p. 30 | arXiv
[5] The BEH-mechanism, interactions with short range forces and scalar particles. The Nobel prize in physics 2013 – advanced information. Nobelprize.org. Nobel Media AB 2013. Web. 28 Feb 2014, http://www.nobelprize.org/nobel_prizes/physics/laureates/2013/advanced.html.
[6] Planck 2013 results. I. Overview of products and scientific results | arXiv
[7] The cosmological parameters 2014, contribution to the review of particle physics 2014 | arXiv
[8] Review of particle physics (RPP), Phys. Rev. D, Volume 86 (2012) (010001)
[9] Introducing supersymmetry, Phys. Rep., Volume 128 (1985), p. 39
[10] Grand unification, Scholarpedia, Volume 7 (2012) no. 10, p. 11419
[11] Binary pulsars and relativistic gravity, Rev. Mod. Phys., Volume 66 (1994), p. 711 (Nobel lecture, 8 December 1993)
[12] Approximative integration of the field equations of gravitation, Sitz.ber. Preuss. Akad. Wiss. Berl. Math. Phys., Volume 1916 (1916), p. 688
[13] The confrontation between general relativity and experiment, Living Rev. Relativ., Volume 4 (2001), p. 4 | arXiv
[14] Experimental tests of gravitational theory, contribution to the review of particle physics 2014 http://pdg.lbl.gov/2013/reviews/rpp2013-rev-gravity-tests.pdf
[15] Vacuum quantum fluctuations in curved space and the theory of gravitation, Gen. Relativ. Gravit., Volume 12 (1968), p. 1040
[16] Large N field theories, string theory and gravity, Phys. Rep., Volume 323 (2000), p. 183 | arXiv
[17] On the logical necessity of quantizing the gravitational field, Found. Phys., Volume 7 (1977), pp. 51-68
[18] Indirect evidence for quantum gravity, Phys. Rev. Lett., Volume 47 (1981), p. 979
[19] Is a graviton detectable?, Int. J. Mod. Phys. A, Volume 28 (2013) (1330041)
[20] Quantum theory of gravitation, Acta Phys. Pol., Volume 24 (1963), p. 697
[21] Feynman Lectures on Gravitation, the Advanced Book Program, Addison-Wesley, Reading, USA, 1995 (232 p.)
[22] Quantum theory of gravity. 3. Applications of the covariant theory, Phys. Rev., Volume 160 (1967), p. 1113
[23] One loop divergencies in the theory of gravitation, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 20 (1974), p. 69
[24] A limit on the variation of the speed of light arising from quantum gravity effects, Nature, Volume 462 (2009), p. 331 | arXiv
[25] A new limit on Planck scale Lorentz violation from gamma-ray burst polarization, Astropart. Phys., Volume 35 (2011), p. 95 | arXiv
[26] Constraints on Lorentz invariance violation using INTEGRAL/IBIS observations of GRB041219A, Phys. Rev. D, Volume 83 (2011), p. 121301 | arXiv
[27] Supergravity, Phys. Rep., Volume 68 (1981), p. 189
[28] Inconsistency of interacting, multigraviton theories, Nucl. Phys. B, Volume 597 (2001), p. 127 | arXiv
[29] Supersymmetries and their representations, Nucl. Phys. B, Volume 135 (1978), p. 149
[30] Supergravity theory in eleven dimensions, Phys. Lett. B, Volume 76 (1978), p. 409
[31] The supergravity theory. 1. The Lagrangian, Phys. Lett. B, Volume 80 (1978), p. 48
[32] Ultraviolet properties of maximal supergravity, Phys. Rev. Lett., Volume 98 (2007) (131602) | arXiv
[33] Manifest ultraviolet behavior for the three-loop four-point amplitude of supergravity, Phys. Rev. D, Volume 78 (2008) (105019) | arXiv
[34] Superstring Theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, UK, 1987
[35] Can space–time be probed below the string size?, Phys. Lett. B, Volume 216 (1989), p. 41
[36] Dual models for nonhadrons, Nucl. Phys. B, Volume 81 (1974), p. 118
[37] General relativity as an effective field theory: the leading quantum corrections, Phys. Rev. D, Volume 50 (1994), p. 3874 | arXiv
[38] Quantum gravitational corrections to the nonrelativistic scattering potential of two masses, Phys. Rev. D, Volume 67 (2003) 084033 069903 (Erratum) | arXiv
[39] On-shell techniques and universal results in quantum gravity | arXiv
[40] Quantum gravity and extra dimensions at high-energy colliders, Nucl. Phys. B, Volume 544 (1999), p. 3 | arXiv
[41] Transplanckian collisions at the LHC and beyond, Nucl. Phys. B, Volume 630 (2002), p. 293 | arXiv
[42] An Introduction to Quantum Field Theory, Addison-Wesley, Reading, USA, 1995 (842 p.)
[43] Multiparton amplitudes in gauge theories, Phys. Rep., Volume 200 (1991), p. 301 | arXiv
[44] On-shell methods in perturbative QCD, Ann. Phys., Volume 322 (2007), p. 1587 | arXiv
[45] Yang–Mills and supergravity as limits of string theories, Nucl. Phys. B, Volume 198 (1982), p. 474
[46] String based methods in perturbative gravity, Phys. Lett. B, Volume 312 (1993), p. 277 | arXiv
[47] The momentum kernel of gauge and gravity theories, J. High Energy Phys., Volume 1101 (2011) (001) | arXiv
[48] Gravity and Yang–Mills amplitude relations, Phys. Rev. D, Volume 82 (2010) (107702) | arXiv
[49] A relation between tree amplitudes of closed and open strings, Nucl. Phys. B, Volume 269 (1986), p. 1
[50] Perturbative quantum gravity and its relation to gauge theory, Living Rev. Relativ., Volume 5 (2002), p. 5 | arXiv
[51] Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett., Volume 105 (2010) (061602) | arXiv
[52] Graviton physics, Am. J. Phys., Volume 74 (2006), p. 1002 | arXiv
[53] Infrared photons and gravitons, Phys. Rev., Volume 140 (1965) (B516)
[54] Simplicity in the structure of QED and gravity amplitudes, J. High Energy Phys., Volume 0902 (2009) (038) | arXiv
[55] Is supergravity ultraviolet finite?, Phys. Lett. B, Volume 644 (2007), p. 265 | arXiv
[56] Unity of superstring dualities, Nucl. Phys. B, Volume 438 (1995), p. 109 | arXiv
[57] Nondecoupling of maximal supergravity from the superstring, Phys. Rev. Lett., Volume 99 (2007) (041601) | arXiv
[58] Automorphic properties of low energy string amplitudes in various dimensions, Phys. Rev. D, Volume 81 (2010) (086008) | arXiv
[59] Small representations, string instantons, small representations, string instantons, and Fourier modes of Eisenstein series (with an appendix by D. Ciubotaru and P. Trapa) | arXiv
[60] String theory dualities and supergravity divergences, J. High Energy Phys., Volume 1006 (2010), p. 75 | arXiv
Cité par Sources :
☆ IPhT-T/13/219, IHES/P/14/08.
Commentaires - Politique