Comptes Rendus
Grand Prix Mergier–Bourdeix 2013 de l'Académie des sciences
Ginzburg–Landau vortices, Coulomb gases, and Abrikosov lattices
[Vortex de Ginzburg–Landau, gaz de Coulomb et réseaux d'Abrikosov]
Comptes Rendus. Physique, Volume 15 (2014) no. 6, pp. 539-546.

Cet article présente une analyse des vortex dans le modèle de Ginzburg–Landau : les transitions de phase ainsi que les énergies effectives qui gouvernent les structures optimales formées par les vortex, en particulier le réseau d'Abrikosov, sont discutées. Des analogies avec les gaz de Coulomb sont aussi évoquées.

This is a review of a mathematical analysis of vortices in the Ginzburg–Landau model: phase transitions and effective energies that govern optimal patterns formed by the vortices, in particular the Abrikosov lattice, are discussed. Analogies with Coulomb gases are also mentioned.

Publié le :
DOI : 10.1016/j.crhy.2014.06.001
Keywords: Ginzburg–Landau equations, Superconductivity, Vortices, Abrikosov lattice, Coulomb gas, One-component plasma
Mot clés : Équations de Ginzburg–Landau, Supraconductivité, Vortex, Réseau d'Abrikosov, Gaz de Coulomb, Plasma à un constituant
Sylvia Serfaty 1, 2

1 UPMC (Université Paris-6) & CNRS, UMR 7598 “Laboratoire Jacques-Louis-Lions”, 75005 Paris, France
2 Courant Institute, New York University, 251 Mercer st, New York, NY 10012, USA
@article{CRPHYS_2014__15_6_539_0,
     author = {Sylvia Serfaty},
     title = {Ginzburg{\textendash}Landau vortices, {Coulomb} gases, and {Abrikosov} lattices},
     journal = {Comptes Rendus. Physique},
     pages = {539--546},
     publisher = {Elsevier},
     volume = {15},
     number = {6},
     year = {2014},
     doi = {10.1016/j.crhy.2014.06.001},
     language = {en},
}
TY  - JOUR
AU  - Sylvia Serfaty
TI  - Ginzburg–Landau vortices, Coulomb gases, and Abrikosov lattices
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 539
EP  - 546
VL  - 15
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crhy.2014.06.001
LA  - en
ID  - CRPHYS_2014__15_6_539_0
ER  - 
%0 Journal Article
%A Sylvia Serfaty
%T Ginzburg–Landau vortices, Coulomb gases, and Abrikosov lattices
%J Comptes Rendus. Physique
%D 2014
%P 539-546
%V 15
%N 6
%I Elsevier
%R 10.1016/j.crhy.2014.06.001
%G en
%F CRPHYS_2014__15_6_539_0
Sylvia Serfaty. Ginzburg–Landau vortices, Coulomb gases, and Abrikosov lattices. Comptes Rendus. Physique, Volume 15 (2014) no. 6, pp. 539-546. doi : 10.1016/j.crhy.2014.06.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.06.001/

[1] M. Tinkham Introduction to Superconductivity, McGraw-Hill, New York, 1996

[2] J. Tilley; D. Tilley Superfluidity and Superconductivity, Adam Hilger Ltd., Bristol, 1986

[3] J.F. Annett Superconductivity, Superfluids and Condensates, Oxf. Ser. Condens. Matter Phys., 2004

[4] A. Abrikosov On the magnetic properties of superconductors of the second type, Sov. Phys. JETP, Volume 5 (1957), pp. 1174-1182

[5] V.L. Ginzburg; L.D. Landau Collected Papers of L.D. Landau (D. Ter Haar, ed.), Pergamon Press, Oxford, 1965

[6] J. Bardeen; L. Cooper; J.R. Schrieffer Theory of superconductivity, Phys. Rev. (2), Volume 108 (1957), pp. 1175-1204

[7] A. Larkin; A. Varlamov Theory of Fluctuations in Superconductors, Oxford Science, Oxford, UK, 2005

[8] R. Frank; C. Hainzl; R. Seiringer; J.P. Solovej Microscopic derivation of Ginzburg–Landau theory, J. Am. Math. Soc., Volume 25 (2012) no. 3, pp. 667-713

[9] E. Sandier; S. Serfaty Vortices in the Magnetic Ginzburg–Landau Model, Birkhäuser, 2007

[10] G. Blatter; M.V. Feigel'man; V.B. Geshkenbein; A.I. Larkin; V.M. Vinokur Vortices in high-temperature superconductors, Rev. Mod. Phys., Volume 66 (1994) no. 4, pp. 1125-1388

[11] P.-G. De Gennes Superconductivity of Metal and Alloys, Benjamin, New York and Amsterdam, 1966

[12] D. Saint-James; E.J. Thomas Type-II Superconductivity, Pergamon Press, Oxford, 1969

[13] S. Fournais; B. Helffer Spectral Methods in Surface Superconductivity, Prog. Nonlinear Differ. Equ. Appl., vol. 77, Birkhäuser, 2010

[14] S.J. Chapman A hierarchy of models for type-II superconductors, SIAM Rev., Volume 42 (2000) no. 4, pp. 555-598

[15] Q. Du; M. Gunzburger; J.S. Peterson Analysis and approximation of the Ginzburg–Landau model of superconductivity, SIAM Rev., Volume 34 (1992) no. 1, pp. 54-81

[16] F. Bethuel; H. Brézis; F. Hélein Ginzburg–Landau Vortices, Prog. Nonlinear Partial Differ. Equations Their Appl., Birkhäuser, 1994

[17] S. Serfaty Coulomb Gases and Ginzburg–Landau Vortices (Zurich Lecture Notes in Mathematics, Eur. Math. Soc., forthcoming) | arXiv

[18] S. Serfaty Ginzburg–Landau vortices, Coulomb gases, and renormalized energies, J. Stat. Phys., Volume 154 (2014) no. 3, pp. 660-680

[19] E. Sandier; S. Serfaty From the Ginzburg–Landau model to vortex lattice problems, Commun. Math. Phys., Volume 313 (2012) no. 3, pp. 635-743

[20] S. Serfaty; S. Serfaty Local minimizers for the Ginzburg–Landau energy near critical magnetic field, part II, Commun. Contemp. Math., Volume 1 (1999) no. 2, pp. 213-254

[21] S. Gueron; I. Shafrir On a discrete variational problem involving interacting particles, SIAM J. Appl. Math., Volume 60 (2000) no. 1, pp. 1-17

[22] S. Serfaty Stable configurations in superconductivity: uniqueness, multiplicity and vortex-nucleation, Arch. Ration. Mech. Anal., Volume 149 (1999), pp. 329-365

[23] V.A. Schweigert; F.M. Peeters; P. Singha Deo Vortex phase diagram for mesoscopic superconducting disks, Phys. Rev. Lett., Volume 81 (1998) no. 13, pp. 2783-2786

[24] E. Saff; V. Totik Logarithmic Potentials with External Fields, Springer-Verlag, 1997

[25] E. Wigner On the interaction of electrons in metals, Phys. Rev., Volume 46 (1934), p. 1002

[26] E. Sandier; S. Serfaty 2D Coulomb gases and the renormalized energy, 2014 (Ann. Probab., in press) | arXiv

[27] J. Ginibre Statistical ensembles of complex, quaternion, and real matrices, J. Math. Phys., Volume 6 (1965), pp. 440-449

[28] E. Wigner Characteristic vectors of bordered matrices with infinite dimensions, Ann. Math. (2), Volume 62 (1955) no. 3, pp. 548-564

[29] F. Dyson; F. Dyson; F. Dyson Statistical theory of the energy levels of a complex system. Part III, J. Math. Phys., Volume 3 (1962), pp. 140-156

[30] P.J. Forrester Log-gases and Random Matrices, Lond. Math. Soc. Monogr. Ser., vol. 34, Princeton University Press, Princeton, NJ, USA, 2010

[31] A. Alastuey; B. Jancovici On the classical two-dimensional one-component Coulomb plasma, J. Phys., Volume 42 (1981) no. 1, pp. 1-12

[32] E. Sandier; S. Serfaty 1D log gases and the renormalized energy: crystallization at vanishing temperature | arXiv

[33] N. Rougerie; S. Serfaty Higher dimensional Coulomb gases and renormalized energy functionals | arXiv

[34] J.S. Brauchart; D.P. Hardin; E.B. Saff (Contemp. Math.), Volume vol. 578 (2012), pp. 31-61

[35] L. Bétermin Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere | arXiv

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

A non-existence result for the Ginzburg–Landau equations

Ayman Kachmar; Mikael Persson

C. R. Math (2009)


On the minimizer of a renormalized energy related to the Ginzburg–Landau model

Peng Zhang

C. R. Math (2015)