Comptes Rendus
Quasi-local transmission conditions for non-overlapping domain decomposition methods for the Helmholtz equation
Comptes Rendus. Physique, Volume 15 (2014) no. 5, pp. 403-414.

In this article, we present new transmission conditions for a domain decomposition method, applied to a scattering problem. Unlike other conditions used in the literature, the conditions developed here are non-local, but can be written as an integral operator (as a Riesz potential) on the interface between two domains. This operator, of order 12, leads to an exponential convergence of the domain decomposition algorithm. A spectral analysis of the influence of the operator on simple cases is presented, as well as some numerical results and comparisons.

Nous présentons dans cet article de nouvelles conditions de transmission pour une méthode de décomposition de domaine appliquée au problème de la diffraction. À l'inverse d'autres conditions décrites dans la littérature, celles développées ici ne sont pas locales, mais peuvent s'écrire sous la forme d'un opérateur intégral (tel qu'un potentiel de Riesz) à l'interface entre deux domaines. Cet opérateur, d'ordre 12, conduit à une convergence exponentielle de l'algorithme de décomposition de domaine. Une analyse spectrale de l'influence de l'opérateur portant sur des cas simples est presentée, ainsi que quelques résultats numériques et comparaisons.

Published online:
DOI: 10.1016/j.crhy.2014.04.005
Keywords: Scattering, Domain decomposition, Transmission conditions, Riesz potential
Mot clés : Diffusion, Domaine de décomposition, Transmission (conditions), Potentiel de Riesz

Matthieu Lecouvez 1; Bruno Stupfel 1; Patrick Joly 2; Francis Collino 2

1 Commissariat à l'énergie atomique (CEA), 15, avenue des Sablières, 33114 Le Barp, France
2 POEMS, UMR CNRS/ENSTA/INRIA, ENSTA ParisTech, 828, bd des Maréchaux, 91762 Palaiseau cedex, France
@article{CRPHYS_2014__15_5_403_0,
     author = {Matthieu Lecouvez and Bruno Stupfel and Patrick Joly and Francis Collino},
     title = {Quasi-local transmission conditions for non-overlapping domain decomposition methods for the {Helmholtz} equation},
     journal = {Comptes Rendus. Physique},
     pages = {403--414},
     publisher = {Elsevier},
     volume = {15},
     number = {5},
     year = {2014},
     doi = {10.1016/j.crhy.2014.04.005},
     language = {en},
}
TY  - JOUR
AU  - Matthieu Lecouvez
AU  - Bruno Stupfel
AU  - Patrick Joly
AU  - Francis Collino
TI  - Quasi-local transmission conditions for non-overlapping domain decomposition methods for the Helmholtz equation
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 403
EP  - 414
VL  - 15
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2014.04.005
LA  - en
ID  - CRPHYS_2014__15_5_403_0
ER  - 
%0 Journal Article
%A Matthieu Lecouvez
%A Bruno Stupfel
%A Patrick Joly
%A Francis Collino
%T Quasi-local transmission conditions for non-overlapping domain decomposition methods for the Helmholtz equation
%J Comptes Rendus. Physique
%D 2014
%P 403-414
%V 15
%N 5
%I Elsevier
%R 10.1016/j.crhy.2014.04.005
%G en
%F CRPHYS_2014__15_5_403_0
Matthieu Lecouvez; Bruno Stupfel; Patrick Joly; Francis Collino. Quasi-local transmission conditions for non-overlapping domain decomposition methods for the Helmholtz equation. Comptes Rendus. Physique, Volume 15 (2014) no. 5, pp. 403-414. doi : 10.1016/j.crhy.2014.04.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.04.005/

[1] B. Després Domain decomposition method and the Helmholtz problem (Part II), Second International Conference on Mathematical and Numerical Aspects of Wave Propagation Phenomena, SIAM, 1993, pp. 197-206

[2] M. Gander; F. Magoulès; F. Nataf Optimized Schwarz methods without overlap for the Helmholtz equation, SIAM J. Sci. Comput., Volume 24 (2002) no. 1, pp. 38-60

[3] Z. Peng; V. Rawat; J.-F. Lee One way domain decomposition method with second order transmission condition for solving electromagnetic wave problems, J. Comput. Phys., Volume 229 (2010), pp. 1181-1197

[4] B. Stupfel; D. Poget Sufficient uniqueness conditions for the solution of the time harmonic Maxwell's equations associated with surface impedance boundary conditions, J. Comput. Phys., Volume 230 (2011), pp. 4571-4587

[5] F. Collino; S. Ghanemi; P. Joly Domain decomposition method for the harmonic wave propagation: a general presentation, Comput. Methods Appl. Mech. Eng., Volume 184 (2000), pp. 171-211

[6] E. Stein Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970

[7] Y. Saad Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, 2003

Cited by Sources:

Comments - Policy