Comptes Rendus
Prix Aniuta Winter-Klein 2013 de l'Académie des sciences
Is glass brittle at all scales?
[Le verre est-il fragile à toutes les échelles ?]
Comptes Rendus. Physique, Volume 15 (2014) no. 6, pp. 527-535.

Bien que le verre de silice soit considéré comme l'archétype des matériaux fragiles, qui cassent sans se déformer, sa rupture s'accompagne de dissipation. Par l'examen post-mortem de surfaces de rupture, le suivi in situ de la progression d'une fissure de corrosion sous contrainte et la mesure de la profondeur de pénétration de l'eau dans le matériau pendant sa fissuration lente, nous montrons que le verre se comporte en fait de manière quasi fragile, avec une zone endommagée d'une dizaine de nanomètres qui se développe en pointe de fissure.

Although silicate glass is considered as the archetype of brittle materials, which break without deforming irreversibly, its fracture involves some dissipation. By examining the post-mortem fracture surfaces, by following in situ the progression of a stress corrosion crack and by measuring the depth of penetration of water in the material during slow fracture, we show that glass behaves in fact in a quasi-brittle manner, with a damaged zone of ∼10 nm developing ahead of the crack tip.

Publié le :
DOI : 10.1016/j.crhy.2014.06.002
Keywords: Stress corrosion cracking, Quasi-brittle fracture, Damage, Silicate glass
Mot clés : Corrosion sous contrainte, Rupture quasi fragile, Endommagement, Verre de silice
Élisabeth Bouchaud 1, 2

1 CEA-Saclay, L'Orme des Merisiers, DSM/IRAMIS/SPEC, 91191 Gif-sur-Yvette cedex, France
2 PSL Research University, ESPCI–ParisTech, UMR Gulliver 7083, EC2M, 10 rue Vauquelin, 75005 Paris, France
@article{CRPHYS_2014__15_6_527_0,
     author = {\'Elisabeth Bouchaud},
     title = {Is glass brittle at all scales?},
     journal = {Comptes Rendus. Physique},
     pages = {527--535},
     publisher = {Elsevier},
     volume = {15},
     number = {6},
     year = {2014},
     doi = {10.1016/j.crhy.2014.06.002},
     language = {en},
}
TY  - JOUR
AU  - Élisabeth Bouchaud
TI  - Is glass brittle at all scales?
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 527
EP  - 535
VL  - 15
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crhy.2014.06.002
LA  - en
ID  - CRPHYS_2014__15_6_527_0
ER  - 
%0 Journal Article
%A Élisabeth Bouchaud
%T Is glass brittle at all scales?
%J Comptes Rendus. Physique
%D 2014
%P 527-535
%V 15
%N 6
%I Elsevier
%R 10.1016/j.crhy.2014.06.002
%G en
%F CRPHYS_2014__15_6_527_0
Élisabeth Bouchaud. Is glass brittle at all scales?. Comptes Rendus. Physique, Volume 15 (2014) no. 6, pp. 527-535. doi : 10.1016/j.crhy.2014.06.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.06.002/

[1] A.A. Griffith The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. Lond. A, Volume 221 (1921), pp. 163-198

[2] B. Lawn Fracture of Brittle Solids, Cambridge University Press, 1993

[3] R.T. Sanderson Chemical Bonds and Bond Energy, Academic Press, 1971

[4] F. Célarié; S. Prades; D. Bonamy; L. Ferrero; A. Dickelé; É. Bouchaud; C. Guillot; C. Marlière Surface fracture of glassy materials as detected by real-time atomic force microscopy experiments, Appl. Surf. Lett., Volume 212–213 (2003), pp. 92-96

[5] D. Bonamy; É. Bouchaud Failure of heterogeneous materials: a dynamic phase transition?, Phys. Rep., Volume 498 (2011), pp. 1-44

[6] A. Nakano; R.K. Kalia; P. Vashishta Dynamics and morphology of brittle cracks: a molecular-dynamics study of silicon-nitride, Phys. Rev. Lett., Volume 75 (1995), pp. 3138-3141

[7] P. Guan; S. Lu; M.J.B. Spector; P.K. Valavala; M. Falk Cavitation in amorphous solids, Phys. Rev. Lett., Volume 110 (2013), p. 185502

[8] C.L. Rountree; R.K. Kalia; E. Lidorikis; A. Nakano; L. Van Brutzel; P. Vashishta Atomistic aspects of crack propagation in brittle materials: multimillion atom molecular dynamics simulations, Annu. Rev. Mater. Res., Volume 32 (2002), pp. 377-400

[9] M.L. Falk Molecular-dynamics study of ductile and brittle fracture in model noncrystalline solids, Phys. Rev. B, Volume 60 (1999), pp. 7062-7070

[10] P. Daguier; S. Hénaux; É. Bouchaud; F. Creuzet Quantitative analysis of a fracture surface by atomic force microscopy, Phys. Rev. E, Volume 53 (1996), p. 5637

[11] F. Célarié; S. Prades; D. Bonamy; L. Ferrero; É. Bouchaud; C. Guillot; C. Marlière Glass breaks like metals, but at the nanometer scale, Phys. Rev. Lett., Volume 90 (2003), p. 075504

[12] C. Marlière; S. Prades; F. Célarié; D. Dalmas; D. Bonamy; L. Ferrero; A. Dickelé; C. Guillot; É. Bouchaud Crack fronts and damage in glass at the nanometer scale, J. Phys. Condens. Matter, Volume 15 (2003), p. S2377-S2386

[13] S. Prades; D. Bonamy; D. Dalmas; É. Bouchaud; C. Guillot Nano-ductile propagation in glasses under stress corrosion: spatio-temporal evolution of damage in the vicinity of the crack tip, Int. J. Solids Struct., Volume 42 (2004), pp. 637-645

[14] S.M. Wiederhorn Moisture assisted crack growth in ceramics, Int. J. Fract. Mech., Volume 4 (1968), pp. 171-177

[15] S.M. Wiederhorn Fracture surface energy of glass, J. Am. Ceram. Soc., Volume 52 (1969)

[16] M. Ciccotti Stress-corrosion mechanisms in silicate glasses, J. Phys. D, Appl. Phys., Volume 42 (2009), p. 214006 (Special Issue “Fracture: from the atomic to the geophysical scale”, Guest Editors É. Bouchaud and P. Soukiassian)

[17] T.A. Michalske; B.C. Bunker Slow fracture model based on strained silicate structures, J. Appl. Phys., Volume 56 (1984), pp. 2686-2693

[18] F. Lechenault; C.L. Rountree; F. Cousin; J.-P. Bouchaud; L. Ponson; É. Bouchaud Evidence of deep water penetration into silica during stress corrosion fracture, Phys. Rev. Lett., Volume 106 (2011), p. 165504

[19] Continuum Models for Discrete Systems International Conference (CMDS 12), Kolkatta, India.

[20] B.B. Mandelbrot; D.E. Passoja; A.J. Paullay Fractal character of fracture surfaces of metals, Nature, Volume 308 (1984), pp. 721-722

[21] É. Bouchaud; G. Lapasset; J. Planes Fractal dimension of fractured surfaces: a universal value?, Europhys. Lett., Volume 13 (1990), p. 73

[22] L. Ponson; D. Bonamy; É. Bouchaud Two dimensional scaling properties of experimental fracture surfaces, Phys. Rev. Lett., Volume 96 (2006), p. 035506

[23] L. Ponson Crack propagation in disordered materials: how to decipher fracture surfaces, Ann. Phys., Volume 32 (2007) no. 1

[24] F. Célarié; M. Ciccotti; C. Marlière Stress-enhanced ion diffusion at the vicinity of a crack tip as evidenced by atomic force microscopy in silicate glasses, J. Non-Cryst. Solids, Volume 353 (2007), pp. 51-68

[25] F. Lechenault; G. Pallares; M. George; C. Rountree; É. Bouchaud; M. Ciccotti Effects of finite probe size on self-affine roughness measurements, Phys. Rev. Lett., Volume 104 (2010), p. 025502

[26] M.Y. He; M.R. Turner; A.G. Evans Analysis of the double cleavage drilled compression specimen for interface fracture energy measurements over a range of mode mixities, Acta Metall. Mater., Volume 43 (1995), pp. 3453-3458

[27] J.-P. Guin; S.M. Wiederhorn Fracture of silicate glasses: ductile or brittle?, Phys. Rev. Lett., Volume 92 (2004), p. 215502

[28] J.M. Lòpez-Cepero; S.M. Wiederhorn; T. Fett; J.-P. Guin Do plastic zones form at crack tips in silicate glasses?, Int. J. Mater. Res., Volume 98 (2007), pp. 1170-1176

[29] K. Han; M. Ciccotti; S. Roux Measuring nanoscale stress intensity factors with an atomic force microscope, Europhys. Lett., Volume 89 (2010), p. 66003

[30] K.M. Davis; M. Tomozawa An infrared spectroscopic study of water-related species in silica glasses, J. Non-Cryst. Solids, Volume 201 (1996), pp. 177-198

[31] S. Berger; M. Tomozawa Water diffusion into a silica glass optical fiber, J. Non-Cryst. Solids, Volume 324 (2003), pp. 256-263

[32] M. Tomozawa; K.M. Davis Time dependent diffusion coefficient of water into silica glass at low temperatures, Mater. Sci. Eng. A, Volume 272 (1999), pp. 114-119

[33] F.C. Larché; P.W. Voorhees Diffusion and stresses: basic thermodynamics, Defect Diffus. Forum, Volume 129 (1996) no. 130, pp. 31-36

[34] H. Mehrer The effect of pressure on diffusion, Defects Diffusion Forum, Volume 129 (1996) no. 130, pp. 57-76

[35] M.J. Aziz; Y. Zhao; H.-J. Gossmann; S. Mitha; S.P. Smith; D. Schiferl Pressure and stress effects on the diffusion of B and Sb in Si and Si–Ge alloys, Phys. Rev. B, Volume 73 (2006), p. 054101

[36] J. Guery; J. Baudry; D.A. Weitz; P.M. Chaikin; J. Bibette Diffusion through colloidal shells under stress, Phys. Rev. E, Volume 79 (2009), p. 060402

[37] F. Cousin; A. Menelle La réflectivité de neutrons (A. Ayral; V. Rouessac, eds.), Techniques Innovantes pour la Caractérisation Optique Microstructurale de Couches Minces, Sciences et Techniques de l'Ingénieur, CNRS Éditions, Paris, 2006

[38] http://www.sfn.asso.fr/Enseignement/Outils/Table/index.html

[39] J.-C. Charmet; P.-G. de Gennes Ellipsometric formulas for an inhomogeneous layer with arbitrary refractive index profile, J. Opt. Soc. Am., Volume 73 (1983), pp. 1777-1784

Cité par Sources :

Commentaires - Politique