In this paper, we offer a brief review of the ground-state properties of the cubic oxides AnO2, where , Np, Pu and Am, as revealed mainly by NMR studies of the 17O2− ligand. For PuO2, where the ground state is a nonmagnetic singlet eigenstate of the cubic crystal field, only the 239Pu has been studied, in a recent breakthrough observation of this elusive isotope [1]. For UO2 and NpO2, the former has an exotic four-sublattice antiferromagnetic (AFM) ground state, while the latter has the first multipolar ground state to be identified among actinide compounds, namely a mixture of octupolar and rank 5 (triakontadipolar) order. On the other hand AmO2, even with the longest-lived isotope 243Am, becomes disordered so quickly from radiation self-damage that its ground state in a recent study was simply a spin glass, while the actual ground state of the cubic crystalline compound remains obscured by this experimental problem. The emphasis throughout is on how 17O NMR studies complement other experimental data to confirm and verify the known exotic magnetic ground states of AnO2 systems.
Dans ce papier, nous passons brièvement en revue les propriétés de l'état fondamental des oxydes cubiques AnO2, avec , Np, Pu et Am, telles que révélées principalement par les études RMN du ligand 17O2−. Pour PuO2, où l'état fondamental dans le champ cristallin cubique est un singulet non magnétique, seul le 239Pu a été mesuré dans une étude récente, qui représente une percée pour ce qui concerne cet isotope d'accès difficile. UO2 a un état fondamental antiferromagnétique (AFM) exotique à quatre sous-réseaux, tandis que NpO2 montre le premier état fondamental multipolaire identifié dans un composé d'actinide, consistant en un mélange d'ordre octupolaire et de rang 5 (triakontadipolaire). Par ailleurs, AmO2, même avec son isotope possédant la plus longue période, 243Am, devient si rapidement désordonné du fait des dommages qu'il subit par auto-irradiation que son état fondamental était simplement, dans une étude récente, un verre de spins, alors que l'état fondamental réel du composé cubique cristallin demeure masqué par cette difficulté expérimentale. L'accent est mis sur la façon dont les mesures RMN sur le noyau 17O complètent les autres données expérimentales pour confirmer et vérifier l'état fondamental, souvent exotique, établi pour les systèmes AnO2.
Mots-clés : Oxydes d'actinides, Ordre multipolaire, Résonance magnétique nucléaire
Russell E. Walstedt 1; Yo Tokunaga 2; Shinsaku Kambe 2
@article{CRPHYS_2014__15_7_563_0, author = {Russell E. Walstedt and Yo Tokunaga and Shinsaku Kambe}, title = {NMR studies of actinide oxides {\textendash} {A} review}, journal = {Comptes Rendus. Physique}, pages = {563--572}, publisher = {Elsevier}, volume = {15}, number = {7}, year = {2014}, doi = {10.1016/j.crhy.2014.06.007}, language = {en}, }
Russell E. Walstedt; Yo Tokunaga; Shinsaku Kambe. NMR studies of actinide oxides – A review. Comptes Rendus. Physique, Emergent phenomena in actinides, Volume 15 (2014) no. 7, pp. 563-572. doi : 10.1016/j.crhy.2014.06.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.06.007/
[1] Observation of 239Pu nuclear magnetic resonance, Science, Volume 336 (2012), pp. 901-904
[2] Observation of 235U NMR in the antiferromagnetic state of UO2, J. Phys. Soc. Jpn., Volume 67 (1998), pp. 65-66
[3] First-order phase transition in UO2: 235U and 17O NMR study, Phys. Rev. B, Volume 63 (2001), p. 104404 (10 p)
[4] NMR investigation of quadrupole order parameter in actinide dioxides, J. Optoelectron. Adv. Mater., Volume 10 (2008), pp. 1663-1665
[5] Multipolar interactions in f-electron systems: the paradigm of actinide oxides, Rev. Mod. Phys., Volume 81 (2009), p. 807
[6] A crystal field calculation in uranium dioxide, J. Phys. Chem. Solids, Volume 27 (1966), pp. 1833-1836
[7] Triple-q octupolar ordering in NpO2, Phys. Rev. Lett., Volume 89 (2002), p. 187202 (4 p)
[8] Crystal-field transition in PuO2, Phys. Rev. B, Volume 59 (1999), pp. 104-106
[9] Magnetic susceptibility of 243AmO2, J. Chem. Phys., Volume 63 (1975), pp. 3174-3175
[10] Effective crystalline electric field potential in a j–j coupling scheme, J. Phys. Soc. Jpn., Volume 80 (2009), p. 024408 (7 p. 15 p)
[11] Direct observation of electric-quadrupolar order in UO2, Phys. Rev. B, Volume 73 (2006), p. 060406 (4 p)
[12] Quadrupolar waves in uranium dioxide, Phys. Rev. Lett., Volume 105 (2010), p. 167201 (4 p)
[13] Multipolar, magnetic, and vibrational lattice dynamics in the low–temperature phase of uranium dioxide, Phys. Rev. B, Volume 84 (2011), p. 104409 (10 p)
[14]
, Clarendon Press, Oxford (1961), p. 233[15] Magnetic excitations in uranium dioxide, Phys. Rev., Volume 166 (1968), pp. 530-539
[16] Neutron diffraction on actinides, J. Less-Common Met., Volume 14 (1976), pp. 1151-1164
[17] Spin echo modulation caused by the quadrupole interaction and multiple spin echoes, J. Phys. Soc. Jpn., Volume 21 (1966), pp. 77-89
[18] Influence of magnon–phonon coupling on the low-temperature magnetic properties of an antiferromagnet, Phys. Rev. Lett., Volume 7 (1961), pp. 269-270
[19] The magnetic susceptibility of neptunium oxide and carbide between 4.2 K and 350 K, J. Appl. Phys., Volume 38 (1967), pp. 1451-1453
[20] Magnetic-octupole order in neptunium oxide?, Phys. Rev. Lett., Volume 85 (2000), pp. 2188-2191
[21] The heat capacity of thorium dioxide from 10 to . The heat capacity anomalies in uranium dioxide and neptunium dioxide, J. Chem. Phys., Volume 21 (1953), pp. 1884-1887
[22] 25-K phase transition in NpO2 from 237Np Mössbauer spectroscopy, Phys. Rev. B, Volume 32 (1985), pp. 257-263
[23] Invariant form of hyperfine interaction with multipolar moments – observation of octupolar moments in NpO2 and by NMR, J. Phys. Soc. Jpn., Volume 74 (2005), pp. 457-467
[24] A search for anharmonic effects in NpO2 at low temperature by neutron diffraction, Solid State Commun., Volume 64 (1987), pp. 149-152
[25] Magnetic order in NpO2 and UO2 studied by muon spin rotation, J. Alloys Compd., Volume 271–273 (1998), pp. 463-466
[26] Unusual magnetism of NpO2: a study with resonant X-ray scattering, Phys. Rev. B, Volume 60 ( 1999-II ), pp. 15187-15193
[27] NMR evidence for triple-q multipole structure in NpO2, Phys. Rev. Lett., Volume 94 (2005), p. 1372091 (4 p)
[28] NMR evidence for higher-order multipole order parameters in NpO2, Phys. Rev. Lett., Volume 97 (2006), p. 2576011 (4 p)
[29] Hidden order and low-energy excitations in NpO2, Phys. Rev. Lett., Volume 97 (2006), p. 2072031 (4 p)
[30] Inelastic neutron scattering study of the multipolar order parameter in NpO2, Phys. Rev. B, Volume 78 (2008), p. 104425 (6 p)
[31] First-principles theory of multipolar order in NpO2, Phys. Rev. B, Volume 82 (2010), p. 241103R (4 p)
[32] 237Np–17O cross relaxation in NpO2 driven by indirect spin-spin coupling, Phys. Rev. B, Volume 74 (2006), p. 064421 (7 p)
[33] 237Np nuclear relaxation rate in heavy fermion superconductor NpPd5Al2, Phys. Rev. B, Volume 84 (2011), p. 099402 (5 p)
[34] NMR evidence for the 8.5 K phase transition in Americium oxide, J. Phys. Soc. Jpn., Volume 79 (2010), p. 0537051 (4 p)
[35] Self-radiation effect and glassy nature of magnetic transition in AmO2 revealed by O NMR, Phys. Rev. B, Volume 89 (2014), p. 214416 (8 p)
[36] Symmetry of the hidden order in from nuclear magnetic resonance studies, J. Phys. Soc. Jpn., Volume 81 (2012), p. 114710 (13 p)
[37] NMR study of in-plane twofold ordering in , Phys. Rev. Lett., Volume 110 (2013), p. 246406 (4 p)
Cited by Sources:
Comments - Policy