Comptes Rendus
Mechanisms and origin of multiferroicity
[Mécanismes et origines de la multiferroïcité]
Comptes Rendus. Physique, Volume 16 (2015) no. 2, pp. 143-152.

Du fait des applications potentielles de leur propriétés intrinsèques de couplage croisé, l'intérêt pour les matériaux multiferroïques s'est accru de manière constante ces derniers temps, conduisant à des avancées à la fois expérimentales et théoriques. Du point de vue théorique, de récents progrès ont permis d'identifier différents mécanismes responsables de l'apparition d'une polarisation ferroélectrique coexistant avec – et couplée à – des propriétés magnétiques. Ce chapitre passe en revue les mécanismes fondamentaux proposés jusqu'à maintenant, principalement en ce qui concerne les oxydes de métaux de transition, comme étant à l'origine de la multiferroïcité.

Motivated by the potential applications of their intrinsic cross-coupling properties, the interest in multiferroic materials has constantly increased recently, leading to significant experimental and theoretical advances. From the theoretical point of view, recent progresses have allowed one to identify different mechanisms responsible for the appearance of ferroelectric polarization coexisting—and coupled—with magnetic properties. This chapter aims at reviewing the fundamental mechanisms devised so far, mainly in transition-metal oxides, which lie at the origin of multiferroicity.

Publié le :
DOI : 10.1016/j.crhy.2015.01.009
Keywords: Multiferroics, Ferroelectricity, Microscopic mechanisms, Transition-metal oxides
Mot clés : Multiferroïques, Ferroélectricité, Mécanismes microscopiques, Oxydes de métaux de transition
Paolo Barone 1 ; Silvia Picozzi 1

1 Consiglio Nazionale delle Ricerche (CNR–SPIN), 67100 L'Aquila, Italy
@article{CRPHYS_2015__16_2_143_0,
     author = {Paolo Barone and Silvia Picozzi},
     title = {Mechanisms and origin of multiferroicity},
     journal = {Comptes Rendus. Physique},
     pages = {143--152},
     publisher = {Elsevier},
     volume = {16},
     number = {2},
     year = {2015},
     doi = {10.1016/j.crhy.2015.01.009},
     language = {en},
}
TY  - JOUR
AU  - Paolo Barone
AU  - Silvia Picozzi
TI  - Mechanisms and origin of multiferroicity
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 143
EP  - 152
VL  - 16
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.01.009
LA  - en
ID  - CRPHYS_2015__16_2_143_0
ER  - 
%0 Journal Article
%A Paolo Barone
%A Silvia Picozzi
%T Mechanisms and origin of multiferroicity
%J Comptes Rendus. Physique
%D 2015
%P 143-152
%V 16
%N 2
%I Elsevier
%R 10.1016/j.crhy.2015.01.009
%G en
%F CRPHYS_2015__16_2_143_0
Paolo Barone; Silvia Picozzi. Mechanisms and origin of multiferroicity. Comptes Rendus. Physique, Volume 16 (2015) no. 2, pp. 143-152. doi : 10.1016/j.crhy.2015.01.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.01.009/

[1] Spin Electronics (M. Ziese; M.J. Thornton, eds.), Lecture Notes in Physics, vol. 569, Springer-Verlag, Berlin, 2001

[2] Handbook of Magnetism and Advanced Magnetic Materials (H. Kronmüller; S.S.P. Parkin, eds.), John Wiley & Sons, Chichester, England, 2007

[3] J.F. Scott Ferroelectric Memories, Series in Advanced Microelectronics, vol. 3, Springer-Verlag, Berlin, 2000

[4] Physics of Ferroelectrics: A Modern Perspective (K.M. Rabe; C.H. Ahn; J.-M. Triscone, eds.), Topics in Applied Physics, vol. 105, Springer-Verlag, Berlin, 2007

[5] H. Schmid Ferroelectrics, 162 (1994), p. 317

[6] N.A. Spaldin; M. Fiebig Science, 309 (2005), pp. 391-392

[7] S.-W. Cheong; M. Mostovoy Nat. Mater., 6 (2007), p. 13

[8] R. Ramesh; N.A. Spaldin Nat. Mater., 6 (2007), p. 21

[9] D.I. Khomskii Physics, 2 (2009), p. 20

[10] K.F. Wang; J.M. Liu; Z.F. Ren Adv. Phys., 58 (2009), p. 321

[11] Y. Tokura; S. Seki Adv. Mater., 22 (2010), p. 1554

[12] A.P. Pyatakov; A.K. Zvezdin Phys. Usp., 55 (2012), p. 557

[13] J. Stöhr; H.C. Siegmann Magnetism. From Fundamentals to Nanoscale Dynamics, Springer Series in Solid-State Sciences, vol. 152, Springer-Verlag, Berlin, 2006

[14] R.D. King-Smith; D. Vanderbilt Phys. Rev. B, 47 (1993), pp. 1651-1654

[15] D. Vanderbilt; R.D. King-Smith Phys. Rev. B, 48 (1993), pp. 4442-4455

[16] R. Resta Rev. Mod. Phys., 66 (1994), pp. 899-915

[17] S. Picozzi; C. Ederer J. Phys. Condens. Matter, 21 (2009), p. 303201

[18] S. Picozzi; A. Stroppa Eur. Phys. J. B, 85 (2012), p. 240

[19] A. Stroppa; S. Picozzi Phys. Chem. Chem. Phys., 12 (2010), pp. 5405-5416

[20] B.T. Matthias Phys. Rev., 75 (1949), p. 1771

[21] Principles and Applications of Ferroelectrics and Related Materials (M.E. Lines; A.M. Glass, eds.), Clarendon Press, Oxford, 1977

[22] W. Cochran Adv. Phys., 9 (1960), pp. 387-423

[23] W. Cochran Adv. Phys., 10 (1961), pp. 401-420

[24] D. Khomskii J. Magn. Magn. Mater., 306 (2006), pp. 1-8

[25] I. Bersuker Phys. Lett., 20 (1966), pp. 589-590

[26] I.B. Bersuker The Jahn–Teller Effect, Cambridge University Press, 2006

[27] N.A. Hill J. Phys. Chem. B, 104 (2000), p. 6694

[28] A. Filippetti; N.A. Hill Phys. Rev. B, 65 (2002), p. 195120

[29] I.B. Bersuker Phys. Rev. Lett., 108 (2012), p. 137202

[30] I.B. Bersuker Chem. Rev., 113 (2013), pp. 1351-1390

[31] I.B. Bersuker J. Phys. Conf. Ser., 428 (2013), p. 012028

[32] S. Bhattacharjee; E. Bousquet; P. Ghosez Phys. Rev. Lett., 102 (2009), p. 117602

[33] J.M. Rondinelli; A.S. Eidelson; N.A. Spaldin Phys. Rev. B, 79 (2009), p. 205119

[34] P. Barone; S. Kanungo; S. Picozzi; T. Saha-Dasgupta Phys. Rev. B, 84 (2011), p. 134101

[35] T. Günter; E. Bousquet; A. David; P. Boullay; P. Ghosez; W. Prellier; M. Fiebig Phys. Rev. B, 85 (2012), p. 214120

[36] H. Sakai; J. Fujioka; T. Fukuda; D. Okuyama; D. Hashizume; F. Kagawa; H. Nakao; Y. Murakami; T. Arima; A.Q.R. Baron; Y. Taguchi; Y. Tokura Phys. Rev. Lett., 107 (2011), p. 137601

[37] J.H. Lee; K.M. Rabe Phys. Rev. Lett., 104 (2010), p. 207204

[38] G. Giovannetti; S. Kumar; C. Ortix; M. Capone; J. van den Brink Phys. Rev. Lett., 109 (2012), p. 107601

[39] J. Wang; J.B. Neaton; H. Zheng; V. Nagarajan; S.B. Ogale; B. Liu; D. Viehland; V. Vaithyanathan; D.G. Schlom; U.V. Waghmare; N.A. Spaldin; K.M. Rabe; M. Wuttig; R. Ramesh Science, 299 (2003), pp. 1719-1722

[40] J.B. Neaton; C. Ederer; U.V. Waghmare; N.A. Spaldin; K.M. Rabe Phys. Rev. B, 71 (2005), p. 014113

[41] M. Goffinet; P. Hermet; D.I. Bilc; P. Ghosez Phys. Rev. B, 79 (2009), p. 014403

[42] D. Lebeugle; D. Colson; A. Forget; M. Viret Appl. Phys. Lett., 91 (2007), p. 022907

[43] O. Diéguez; P. Aguado-Puente; J. Junquera; J. Íñiguez Phys. Rev. B, 87 (2013), p. 024102

[44] A.M. Kadomtseva; A. Zvezdin; Y.F. Popov; A.P. Pyatakov; G.P. Vorob'ev JETP Lett., 79 (2004), p. 571

[45] J. Park; S.-H. Lee; S. Lee; F. Gozzo; H. Kimura; Y. Noda; Y.J. Choi; V. Kiryukhin; S.-W. Cheong; Y. Jo; E.S. Choi; L. Balicas; G.S. Jeon; J.-G. Park J. Phys. Soc. Jpn., 80 (2011), p. 114714

[46] R.D. Johnson; P. Barone; A. Bombardi; R.J. Bean; S. Picozzi; P.G. Radaelli; Y.S. Oh; S.-W. Cheong; L.C. Chapon Phys. Rev. Lett., 110 (2013), p. 217206

[47] M. Tokunaga; M. Azuma; Y. Shimakawa J. Phys. Soc. Jpn., 79 (2010), p. 064713

[48] R. Seshadri; N. Hill Chem. Mater., 13 (2001), p. 2892

[49] P. Baettig; R. Seshadri; N. Spaldin J. Am. Chem. Soc., 129 (2007), p. 9854

[50] A.A. Belik; S. Iikubo; T. Yokosawa; K. Kodama; N. Igawa; S. Shamoto; M. Azuma; M. Takano; K. Kimoto; Y. Matsui; E. Takayama-Muromachi J. Am. Chem. Soc., 129 (2007), pp. 971-977

[51] A. Sundaresan; R.V.K. Mangalam; Y. Iyo; A. Tanaka; C.N.R. Rao J. Mater. Chem., 18 (2008), p. 2191

[52] I.V. Solovyev; Z.V. Pchelkina New J. Phys., 10 (2008), p. 073021

[53] I.V. Solovyev; Z.V. Pchelkina Phys. Rev. B, 82 (2010), p. 094425

[54] Y. Inaguma; K. Tanaka; T. Tsuchiya; D. Mori; T. Katsumata; T. Ohba; K. Hiraki; T. Takahashi; H. Saitoh J. Am. Chem. Soc., 133 (2011), pp. 16920-16929

[55] Y. Inaguma; M. Yoshida; T. Tsuchiya; A. Aimi; K. Tanaka; T. Katsumata; D. Mori J. Phys. Conf. Ser., 215 (2010), p. 012131

[56] X.F. Hao; A. Stroppa; S. Picozzi; A. Filippetti; C. Franchini Phys. Rev. B, 86 (2012), p. 014116

[57] X.F. Hao; A. Stroppa; P. Barone; A. Filippetti; C. Franchini; S. Picozzi New J. Phys., 16 (2014), p. 015030

[58] M. Imada; A. Fujimori; Y. Tokura Rev. Mod. Phys., 70 (1998), pp. 1039-1263

[59] L. Bellaiche; J. Íñiguez Phys. Rev. B, 88 (2013), p. 014104

[60] J.M. Perez-Mato; M. Aroyo; A. García; P. Blaha; K. Schwarz; J. Schweifer; K. Parlinski Phys. Rev. B, 70 (2004), p. 214111

[61] N.A. Benedek; C.J. Fennie Phys. Rev. Lett., 106 (2011), p. 107204

[62] E. Bousquet; M. Dawber; N. Stucki; C. Lichtensteiger; P. Hermet; S. Gariglio; J.-M. Triscone; P. Ghosez Nature, 452 (2008), pp. 732-736

[63] Z. Zanolli; J.C. Wojdeł; J. Íñiguez; P. Ghosez Phys. Rev. B, 88 (2013), p. 060102

[64] T. Fukushima; A. Stroppa; S. Picozzi; J.M. Perez-Mato Phys. Chem. Chem. Phys., 13 (2011), p. 12186

[65] J.M. Rondinelli; C.J. Fennie Adv. Mater., 24 (2012), p. 1961

[66] P. Barone; D. Di Sante; S. Picozzi Phys. Rev. B, 89 (2014), p. 144104

[67] L. Goncalves-Ferreira; S.A.T. Redfern; E. Artacho; E.K.H. Salje Phys. Rev. Lett., 101 (2008), p. 097602

[68] S. Van Aert; S. Turner; R. Delville; D. Schryvers; G. Van Tendeloo; E.K.H. Salje Adv. Mater., 24 (2012), p. 523

[69] X.-K. Wei; A.K. Tagantsev; A. Kvasov; K. Roleder; C.-L. Jia; N. Setter Nat. Commun., 5 (2014), p. 3031

[70] A. Stroppa; P. Jain; P. Barone; M. Marsman; J.M. Perez-Mato; A.K. Cheetham; H.W. Kroto; S. Picozzi Angew. Chem., Int. Ed. Engl., 50 (2011), p. 5487

[71] A. Stroppa; P. Barone; P. Jain; J.M. Perez-Mato; S. Picozzi Adv. Mater., 25 (2013), p. 2284

[72] G. Rogez; N. Viart; M. Drillon Angew. Chem., Int. Ed. Engl., 49 (2010), pp. 1921-1923

[73] T. Kimura Annu. Rev. Mater. Res., 37 (2007), pp. 387-413

[74] H. Katsura; N. Nagaosa; A.V. Balatsky Phys. Rev. Lett., 95 (2005), p. 057205

[75] C. Jia; S. Onoda; N. Nagaosa; J.H. Han Phys. Rev. B, 74 (2006), p. 224444

[76] C. Jia; S. Onoda; N. Nagaosa; J.H. Han Phys. Rev. B, 76 (2007), p. 144424

[77] C.D. Hu Phys. Rev. B, 77 (2008), p. 174418

[78] H.J. Xiang; E.J. Kan; Y. Zhang; M.-H. Whangbo; X.G. Gong Phys. Rev. Lett., 107 (2011), p. 157202

[79] H.J. Xiang; P.S. Wang; M.-H. Whangbo; X.G. Gong Phys. Rev. B, 88 (2013), p. 054404

[80] K. Yamauchi; P. Barone; S. Picozzi Phys. Rev. B, 84 (2011), p. 165137

[81] L.N. Bulaevskii; C.D. Batista; M.V. Mostovoy; D.I. Khomskii Phys. Rev. B, 78 (2008), p. 024402

[82] T. Kimura; J.C. Lashley; A.P. Ramirez Phys. Rev. B, 73 (2006), p. 220401

[83] S. Seki; Y. Yamasaki; Y. Shiomi; S. Iguchi; Y. Onose; Y. Tokura Phys. Rev. B, 75 (2007), p. 100403

[84] T. Kurumaji; S. Seki; S. Ishiwata; H. Murakawa; Y. Tokunaga; Y. Kaneko; Y. Tokura Phys. Rev. Lett., 106 (2011), p. 167206

[85] H. Murakawa; Y. Onose; S. Miyahara; N. Furukawa; Y. Tokura Phys. Rev. Lett., 105 (2010), p. 137202

[86] J.H. Yang; Z.L. Li; X.Z. Lu; M.-H. Whangbo; S.-H. Wei; X.G. Gong; H.J. Xiang Phys. Rev. Lett., 109 (2012), p. 107203

[87] Y.J. Choi; H.T. Yi; S. Lee; Q. Huang; V. Kiryukhin; S.-W. Cheong Phys. Rev. Lett., 100 (2008), p. 047601

[88] H. Wu; T. Burnus; Z. Hu; C. Martin; A. Maignan; J.C. Cezar; A. Tanaka; N.B. Brookes; D.I. Khomskii; L.H. Tjeng Phys. Rev. Lett., 102 (2009), p. 026404

[89] I.A. Sergienko; E. Dagotto Phys. Rev. B, 73 (2006), p. 094434

[90] D.V. Efremov; J. van den Brink; D.I. Khomskii Nat. Mater., 3 (2004), p. 853

[91] J. van den Brink; D.I. Khomskii J. Phys. Condens. Matter, 20 (2008), p. 434217

[92] K. Yamauchi; T. Fukushima; S. Picozzi Phys. Rev. B, 79 (2009), p. 212404

[93] N. Ikeda; H. Ohsumi; K. Ohwada; K. Ishii; T. Inami; K. Kakurai; Y. Murakami; K. Yoshii; S. Mori; Y. Horibe; H. Kito Nature, 436 (2005), p. 1136

[94] H.J. Xiang; M.-H. Whangbo Phys. Rev. Lett., 98 (2007), p. 246403

[95] K. Yamauchi; P. Barone J. Phys. Condens. Matter, 26 (2014), p. 103201

[96] P. Barone; K. Yamauchi; S. Picozzi Phys. Rev. Lett., 106 (2011), p. 077201

[97] P. Barone; S. Picozzi; J. van den Brink Phys. Rev. B, 83 (2011), p. 233103

[98] P. Barone; S. Picozzi Phys. Rev. B, 85 (2012), p. 214101

[99] I.V. Solovyev; S.A. Nikolaev Phys. Rev. B, 87 (2013), p. 144424

[100] S. Picozzi; K. Yamauchi; B. Sanyal; I.A. Sergienko; E. Dagotto Phys. Rev. Lett., 99 (2007), p. 227201

[101] G. Colizzi; A. Filippetti; V. Fiorentini Phys. Rev. B, 82 (2010), p. 140101

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Novel magneto-electric multiferroics from first-principles calculations

Julien Varignon; Nicholas C. Bristowe; Éric Bousquet; ...

C. R. Phys (2015)


Bismuth-based perovskites as multiferroics

Mael Guennou; Michel Viret; Jens Kreisel

C. R. Phys (2015)


Multiferroic RMnO3 thin films

Josep Fontcuberta

C. R. Phys (2015)