Multiferroic materials have received an astonishing attention in the last decades due to expectations that potential coupling between distinct ferroic orders could inspire new applications and new device concepts. As a result, a new knowledge on coupling mechanisms and materials science has dramatically emerged. Multiferroic RMnO3 perovskites are central to this progress, providing a suitable platform to tailor spin–spin and spin–lattice interactions.
With views towards applications, the development of thin films of multiferroic materials have also progressed enormously and nowadays thin-film manganites are available, with properties mimicking those of bulk compounds. Here we review achievements on the growth of hexagonal and orthorhombic RMnO3 epitaxial thin films and the characterization of their magnetic and ferroelectric properties, we discuss some challenging issues, and we suggest some guidelines for future research and developments.
Les matériaux multiferroïques ont reçu une attention étonnante au cours des dernières décades liée à la possibilité de couplage entre les ordres ferroïques et à son potentiel pour de nouvelles applications et de nouveaux concepts de composants. De ce fait, une nouvelle connaissance des mécanismes de couplage et de la science des matériaux a émergé. Les pérovskites multiferroïques RMnO3 sont au centre de ces progrès, en ce sens qu'elles fournissent une plateforme adaptée pour façonner les interactions spin–spin et spin–réseau.
En ce qui concerne les applications, le développement de films minces de matériaux multiferroïques a aussi énormément progressé, et de nos jours des films minces de manganites avec des propriétés similaires à celles des matériaux massifs existent. Nous passons en revue ici les résultats obtenus dans le domaine de la croissance de couches minces épitaxiés de RMnO3 hexagonal et orthorhombique et de la caractérisation de leurs propriétés magnétiques et ferroélectriques. Nous discutons certains enjeux et proposons quelques idées pour des recherches et développements futurs.
Mots-clés : Pérovskites multiferroïques, Couches minces antiferromagnétiques à l'ordre cycloïdal, Couches minces ferroélectriques hexagonales, Couches fines ferroélectriques d'oxydes de manganèse
Josep Fontcuberta 1
@article{CRPHYS_2015__16_2_204_0, author = {Josep Fontcuberta}, title = {Multiferroic {RMnO\protect\textsubscript{3}} thin films}, journal = {Comptes Rendus. Physique}, pages = {204--226}, publisher = {Elsevier}, volume = {16}, number = {2}, year = {2015}, doi = {10.1016/j.crhy.2015.01.012}, language = {en}, }
Josep Fontcuberta. Multiferroic RMnO3 thin films. Comptes Rendus. Physique, Multiferroic materials and heterostructures / Matériaux et hétérostructures multiferroïques, Volume 16 (2015) no. 2, pp. 204-226. doi : 10.1016/j.crhy.2015.01.012. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.01.012/
[1] et al. Science, 299 (2003), p. 1719
[2] Phys. Rev. B, 76 (2007), p. 024116
[3] Int. Sch. Res. Not., Condens. Matter Phys., 2013 (2013), p. 1
[4] et al. Science, 303 (2004), p. 661
[5] et al. Phys. Rev. Lett., 97 (2006), p. 227201
[6] et al. Nat. Mater., 7 (2008), p. 478
[7] Phys. Rev. Lett., 106 (2011), p. 057206
[8] et al. Science, 327 (2010), p. 1106
[9] J. Phys. Condens. Matter, 20 (2008), p. 434221
[10] J. Appl. Phys., 103 (2008), p. 031101
[11] , Annual Reviews Materials Research, vol. 40, Annual Reviews, Palo Alto, CA, USA, 2010, p. 153
(D.R. Clarke; M. Ruhle; F. Zok, eds.)[12] Adv. Mater., 22 (2010), p. 2900
[13] Adv. Mater., 23 (2011), p. 1062
[14] Nature, 426 (2003), p. 55
[15] , Annual Reviews Materials Research, vol. 37, Annual Reviews, Palo Alto, CA, USA, 2007, p. 387
[16] Adv. Mater., 22 (2010), p. 1554
[17] Phys. Rev. B, 72 (2005), p. 020406
[18] Appl. Phys. Lett., 100 (2012), p. 022902
[19] Nat. Mater., 6 (2007), p. 296
[20] J. Solid State Chem., 195 (2012), p. 32
[21] Mater. Sci. Eng., R Rep., 68 (2010), p. 89
[22] J. Phys. D, Appl. Phys., 44 (2011), p. 243001
[23] Solid State Commun., 4 (1966), p. 125
[24] Solid State Commun., 14 (1974), p. 941
[25] Chem. Mater., 10 (1998), p. 2592
[26] Phys. Rev. Lett., 87 (2001), p. 125501
[27] Solid State Commun., 146 (2008), p. 152
[28] Phys. Rev. B, 80 (2009), p. 134416
[29] Phys. Rev. Lett., 84 (2000), p. 5620
[30] Physics, 2 (2009), p. 20
[31] J. Phys. Condens. Matter, 20 (2008), p. 434204
[32] Phys. Rev. Lett., 99 (2007), p. 227201
[33] Phys. Rev. B, 73 (2006), p. 094434
[34] Phys. Rev. Lett., 97 (2006), p. 227204
[35] Annu. Rev. Condens. Matter Phys., 3 (2012), p. 93
[36] Appl. Phys. Lett., 104 (2014), p. 082906
[37] Adv. Mater., 26 (2014), p. 4645
[38] Nat. Mater., 3 (2004), p. 164
[39] et al. Thin Solid Films, 400 (2001), p. 149
[40] et al. Adv. Mater., 18 (2006), p. 3125
[41] Appl. Phys. Lett., 90 (2007), p. 012903
[42] J. Cryst. Growth, 310 (2008), p. 829
[43] Appl. Phys. Lett., 69 (1996), p. 1011
[44] J. Appl. Phys., 93 (2003), p. 5563
[45] C. R. Hebd. Séances Acad. Sci., 256 (1963), p. 1958
[46] J. Supercond. Nov. Magn., 26 (2013), p. 801
[47] Appl. Phys. Lett., 92 (2008), p. 232506
[48] et al. J. Cryst. Growth, 299 (2007), p. 288
[49] J. Appl. Phys., 93 (2003), p. 6990
[50] Appl. Phys. Lett., 93 (2008), p. 162507
[51] Appl. Phys. Lett., 90 (2007), p. 142902
[52] Appl. Phys. Lett., 99 (2011), p. 052506
[53] Phys. Rev. B, 81 (2010), p. 012101
[54] et al. Phys. Rev. B, 80 (2009), p. 045409
[55] Phys. Rev. B, 69 (2004), p. 134108
[56] J. Mater. Chem., 12 (2002), p. 800
[57] Chem. Mater., 15 (2003), p. 2632
[58] Phys. Rev. B, 80 (2009), p. 214111
[59] J. Phys. Condens. Matter, 21 (2009), p. 182001
[60] Phys. Rev. B, 79 (2009), p. 014416
[61] Thin Solid Films, 518 (2010), p. 2275
[62] Appl. Phys. Lett., 96 (2010), p. 222505
[63] Appl. Phys. Lett., 99 (2011), p. 222902
[64] et al. Sci. Rep., 3 (2013), p. 3374
[65] et al. J. Appl. Phys., 106 (2009), p. 103923
[66] J. Cryst. Growth, 310 (2008), p. 3878
[67] Phys. Rev. B, 84 (2011), p. 214424
[68] J. Magn. Magn. Mater., 324 (2012), p. 460
[69] Appl. Phys. Express, 6 (2013), p. 103201
[70] Thin Solid Films, 516 (2008), p. 4899
[71] J. Appl. Phys., 104 (2008), p. 103912
[72] Appl. Phys. Lett., 94 (2009), p. 082502
[73] J. Cryst. Growth, 338 (2012), p. 280
[74] Appl. Phys. Lett., 97 (2010), p. 232902
[75] J. Alloys Compd., 586 (2014), p. S343
[76] et al. Appl. Phys. Lett., 92 (2008), p. 132503
[77] International Conference on Magnetism (Icm 2009), vol. 200, 2010, p. 012210
[78] Phys. Rev. B, 78 (2008), p. 020408
[79] J. Alloys Compd., 509 (2011), p. 5061
[80] Phys. Rev. B, 88 (2013), p. 054401
[81] Appl. Phys. Lett., 98 (2011), p. 082902
[82] Appl. Surf. Sci., 258 (2012), p. 9323
[83] et al., 12th International Conference on Muon Spin Rotation, Relaxation and Resonance (Musr2011), vol. 30, 2012, p. 137
[84] et al. Phys. Rev. Lett., 111 (2013), p. 037201
[85] Appl. Surf. Sci., 278 (2013), p. 92
[86] Appl. Phys. Lett., 101 (2012), p. 122406
[87] Phys. Rev. B, 79 (2009), p. 212414
[88] Nanotechnology, 21 (2010), p. 075705
[89] Inorg. Chem., 40 (2001), p. 1020
[90] Phys. Rev. B, 76 (2007), p. 104405
[91] New J. Phys., 12 (2010), p. 073006
[92] et al. J. Phys. Condens. Matter, 21 (2009), p. 026013
[93] Phys. Rev. B, 86 (2012), p. 054425
[94] Phys. Rev. B, 81 (2010), p. 100411
[95] Phys. Rev. B, 84 (2011)
[96] Phys. Rev. B, 75 (2007), p. 144425
[97] Chem. Mater., 18 (2003), p. 2130
[98] et al. New J. Phys., 11 (2009), p. 043019
[99] Phys. Rev. Lett., 92 (2004), p. 257201
[100] Adv. Funct. Mater., 21 (2011), p. 1567
[101] et al. Phys. Rev. Lett., 106 (2011), p. 047203
[102] J. Appl. Phys., 105 (2009), p. 07d917
[103] J. Magn. Magn. Mater., 310 (2007), p. E364
[104] et al. J. Magn. Magn. Mater., 321 (2009), p. 1719
[105] J. Phys. Condens. Matter, 21 (2009), p. 182001
[106] et al. Nature, 515 (2014), p. 379 (After completion of this review suggested that Mn-segregation at twin boundaries may lead to a local non-collinear spin arrangement that could be responsible for the observed magnetic remanence)
[107] Appl. Phys. Lett., 101 (2012), p. 122904
[108] J. Phys. Condens. Matter, 14 (2002), p. 3285
[109] J. Appl. Phys., 99 (2006), p. 08p302
[110] J. Appl. Phys., 108 (2010), p. 123917
[111] J. Mater. Res., 22 (2007), p. 2096
[112] Appl. Phys. Lett., 95 (2009), p. 142903
[113] Thin Solid Films, 518 (2010), p. 4710
[114] Appl. Phys. Lett., 97 (2010), p. 232905
[115] Appl. Phys. Lett., 99 (2011), p. 219901
[116] Phase Transit., 85 (2012), p. 183
[117] Phys. Rev. B, 88 (2013), p. 100403
[118] Phys. Rev. Lett., 101 (2008), p. 197207
[119] Phys. Rev. Lett., 107 (2011), p. 257601
[120] Phys. Rev. B, 80 (2009), p. 224420
[121] Phase Transit., 84 (2011), p. 555
[122] Phys. Rev. B, 86 (2012), p. 024420
[123] et al. Phys. Rev. Lett., 108 (2012), p. 047203
[124] Phys. Rev. B, 64 (2001), p. 104419
[125] Nat. Mater., 9 (2010), p. 253
[126] Appl. Phys. Lett., 99 (2011), p. 232901
[127] Phys. Rev. Lett., 108 (2012), p. 077203
[128] Nano Lett., 12 (2012), p. 6055
[129] Nat. Commun., 5 (2014), p. 2998
Cited by Sources:
Comments - Policy