Comptes Rendus
Multiferroic RMnO3 thin films
[Films fins de RMnO3 multiferroïque]
Comptes Rendus. Physique, Multiferroic materials and heterostructures / Matériaux et hétérostructures multiferroïques, Volume 16 (2015) no. 2, pp. 204-226.

Les matériaux multiferroïques ont reçu une attention étonnante au cours des dernières décades liée à la possibilité de couplage entre les ordres ferroïques et à son potentiel pour de nouvelles applications et de nouveaux concepts de composants. De ce fait, une nouvelle connaissance des mécanismes de couplage et de la science des matériaux a émergé. Les pérovskites multiferroïques RMnO3 sont au centre de ces progrès, en ce sens qu'elles fournissent une plateforme adaptée pour façonner les interactions spin–spin et spin–réseau.

En ce qui concerne les applications, le développement de films minces de matériaux multiferroïques a aussi énormément progressé, et de nos jours des films minces de manganites avec des propriétés similaires à celles des matériaux massifs existent. Nous passons en revue ici les résultats obtenus dans le domaine de la croissance de couches minces épitaxiés de RMnO3 hexagonal et orthorhombique et de la caractérisation de leurs propriétés magnétiques et ferroélectriques. Nous discutons certains enjeux et proposons quelques idées pour des recherches et développements futurs.

Multiferroic materials have received an astonishing attention in the last decades due to expectations that potential coupling between distinct ferroic orders could inspire new applications and new device concepts. As a result, a new knowledge on coupling mechanisms and materials science has dramatically emerged. Multiferroic RMnO3 perovskites are central to this progress, providing a suitable platform to tailor spin–spin and spin–lattice interactions.

With views towards applications, the development of thin films of multiferroic materials have also progressed enormously and nowadays thin-film manganites are available, with properties mimicking those of bulk compounds. Here we review achievements on the growth of hexagonal and orthorhombic RMnO3 epitaxial thin films and the characterization of their magnetic and ferroelectric properties, we discuss some challenging issues, and we suggest some guidelines for future research and developments.

Publié le :
DOI : 10.1016/j.crhy.2015.01.012
Keywords: Multiferroic perovskite films, Cycloidal antiferromagnetic thin films, Hexagonal ferroelectric thin films, Ferroelectric manganite thin films
Mots-clés : Pérovskites multiferroïques, Couches minces antiferromagnétiques à l'ordre cycloïdal, Couches minces ferroélectriques hexagonales, Couches fines ferroélectriques d'oxydes de manganèse

Josep Fontcuberta 1

1 Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra 08193, Catalonia, Spain
@article{CRPHYS_2015__16_2_204_0,
     author = {Josep Fontcuberta},
     title = {Multiferroic {RMnO\protect\textsubscript{3}} thin films},
     journal = {Comptes Rendus. Physique},
     pages = {204--226},
     publisher = {Elsevier},
     volume = {16},
     number = {2},
     year = {2015},
     doi = {10.1016/j.crhy.2015.01.012},
     language = {en},
}
TY  - JOUR
AU  - Josep Fontcuberta
TI  - Multiferroic RMnO3 thin films
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 204
EP  - 226
VL  - 16
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.01.012
LA  - en
ID  - CRPHYS_2015__16_2_204_0
ER  - 
%0 Journal Article
%A Josep Fontcuberta
%T Multiferroic RMnO3 thin films
%J Comptes Rendus. Physique
%D 2015
%P 204-226
%V 16
%N 2
%I Elsevier
%R 10.1016/j.crhy.2015.01.012
%G en
%F CRPHYS_2015__16_2_204_0
Josep Fontcuberta. Multiferroic RMnO3 thin films. Comptes Rendus. Physique, Multiferroic materials and heterostructures / Matériaux et hétérostructures multiferroïques, Volume 16 (2015) no. 2, pp. 204-226. doi : 10.1016/j.crhy.2015.01.012. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.01.012/

[1] J. Wang et al. Science, 299 (2003), p. 1719

[2] D. Lebeugle; D. Colson; A. Forget; M. Viret; P. Bonville; J.-F. Marucco; S. Fusil Phys. Rev. B, 76 (2007), p. 024116

[3] B. Lorenz Int. Sch. Res. Not., Condens. Matter Phys., 2013 (2013), p. 1

[4] H. Zheng et al. Science, 303 (2004), p. 661

[5] V. Laukhin et al. Phys. Rev. Lett., 97 (2006), p. 227201

[6] Y.H. Chu et al. Nat. Mater., 7 (2008), p. 478

[7] V. Skumryev; V. Laukhin; I. Fina; X. Marti; F. Sanchez; M. Gospodinov; J. Fontcuberta Phys. Rev. Lett., 106 (2011), p. 057206

[8] V. García et al. Science, 327 (2010), p. 1106

[9] H. Bea; M. Gajek; M. Bibes; A. Barthelemy J. Phys. Condens. Matter, 20 (2008), p. 434221

[10] C.-W. Nan; M.I. Bichurin; S. Dong; D. Viehland; G. Srinivasan J. Appl. Phys., 103 (2008), p. 031101

[11] G. Srinivasan (D.R. Clarke; M. Ruhle; F. Zok, eds.), Annual Reviews Materials Research, vol. 40, Annual Reviews, Palo Alto, CA, USA, 2010, p. 153

[12] C.A.F. Vaz; J. Hoffman; C.H. Anh; R. Ramesh Adv. Mater., 22 (2010), p. 2900

[13] J. Ma; J.M. Hu; Z. Li; C.W. Nan Adv. Mater., 23 (2011), p. 1062

[14] T. Kimura; T. Goto; H. Shintani; K. Ishizaka; T. Arima; Y. Tokura Nature, 426 (2003), p. 55

[15] T. Kimura, Annual Reviews Materials Research, vol. 37, Annual Reviews, Palo Alto, CA, USA, 2007, p. 387

[16] Y. Tokura; S. Seki Adv. Mater., 22 (2010), p. 1554

[17] M. Gajek; M. Bibes; A. Barthelemy; K. Bouzehouane; S. Fusil; M. Varela; J. Fontcuberta; A. Fert Phys. Rev. B, 72 (2005), p. 020406

[18] E. Langenberg; I. Fina; P. Gemeiner; B. Dkhil; L. Fabrega; M. Varela; J. Fontcuberta Appl. Phys. Lett., 100 (2012), p. 022902

[19] M. Gajek; M. Bibes; S. Fusil; K. Bouzehouane; J. Fontcuberta; A.E. Barthelemy; A. Fert Nat. Mater., 6 (2007), p. 296

[20] A.A. Belik J. Solid State Chem., 195 (2012), p. 32

[21] L.W. Martín; Y.H. Chu; R. Ramesh Mater. Sci. Eng., R Rep., 68 (2010), p. 89

[22] G. Lawes; G. Srinivasan J. Phys. D, Appl. Phys., 44 (2011), p. 243001

[23] A. Waintal; J.J. Capponi; E.F. Bertaut Solid State Commun., 4 (1966), p. 125

[24] S. Quezel; J. Rossatmi; E.F. Bertaut Solid State Commun., 14 (1974), p. 941

[25] P.A. Salvador; T.D. Doan; B. Mercey; B. Raveau Chem. Mater., 10 (1998), p. 2592

[26] I. Loa; P. Adler; A. Grzechnik; K. Syassen; U. Schwarz; M. Hanfland; G.K. Rozenberg; P. Gorodetsky; M.P. Pasternak Phys. Rev. Lett., 87 (2001), p. 125501

[27] H. Okamoto; N. Imamura; B.C. Hauback; A. Karppinen; H. Yamauchi; H. Fjevag Solid State Commun., 146 (2008), p. 152

[28] M. Mochizuki; N. Furukawa Phys. Rev. B, 80 (2009), p. 134416

[29] M. Fiebig; D. Frohlich; K. Kohn; S. Leute; T. Lottermoser; V.V. Pavlov; R.V. Pisarev Phys. Rev. Lett., 84 (2000), p. 5620

[30] D. Khomskii Physics, 2 (2009), p. 20

[31] T. Kimura; Y. Tokura J. Phys. Condens. Matter, 20 (2008), p. 434204

[32] S. Picozzi; K. Yamauchi; B. Sanyal; I.A. Sergienko; E. Dagotto Phys. Rev. Lett., 99 (2007), p. 227201

[33] I.A. Sergienko; E. Dagotto Phys. Rev. B, 73 (2006), p. 094434

[34] I.A. Sergienko; C. Sen; E. Dagotto Phys. Rev. Lett., 97 (2006), p. 227204

[35] T. Kimura Annu. Rev. Condens. Matter Phys., 3 (2012), p. 93

[36] Y. Hamasaki; T. Shimizu; H. Taniguchi; T. Taniyama; S. Yasui; M. Itoh Appl. Phys. Lett., 104 (2014), p. 082906

[37] M. Gich; I. Fina; A. Morelli; F. Sánchez; M. Alexe; J. Gázquez; J. Fontcuberta; A. Roig Adv. Mater., 26 (2014), p. 4645

[38] B.B. Van Aken; T.T.M. Palstra; A. Filippetti; N.A. Spaldin Nat. Mater., 3 (2004), p. 164

[39] A.A. Bosak et al. Thin Solid Films, 400 (2001), p. 149

[40] J.H. Lee et al. Adv. Mater., 18 (2006), p. 3125

[41] J.H. Lee; P. Murugavel; D. Lee; T.W. Noh; Y. Jo; M.H. Jung; K.H. Jang; J.G. Park Appl. Phys. Lett., 90 (2007), p. 012903

[42] D. Lee; J.H. Lee; S.Y. Jang; P. Murugavel; Y.D. Ko; J.S. Chung J. Cryst. Growth, 310 (2008), p. 829

[43] N. Fujimura; T. Ishida; T. Yoshimura; T. Ito Appl. Phys. Lett., 69 (1996), p. 1011

[44] D. Ito; N. Fujimura; T. Yoshimura; T. Ito J. Appl. Phys., 93 (2003), p. 5563

[45] F. Bertaut; P. Fang; F. Forrat C. R. Hebd. Séances Acad. Sci., 256 (1963), p. 1958

[46] K.H. Wu; H.J. Chen; C.C. Hsieh; C.W. Luo; T.M. Uen; J.Y. Lin; J.Y. Juang J. Supercond. Nov. Magn., 26 (2013), p. 801

[47] I. Gelard; C. Dubourdieu; S. Pailhes; S. Petit; C. Simon Appl. Phys. Lett., 92 (2008), p. 232506

[48] X. Martí et al. J. Cryst. Growth, 299 (2007), p. 288

[49] N. Fujimura; H. Sakata; D. Ito; T. Yoshimura; T. Yokota; T. Ito J. Appl. Phys., 93 (2003), p. 6990

[50] S.Y. Jang; D. Lee; J.H. Lee; T.W. Noh; Y. Jo; M.H. Jung; J.S. Chung Appl. Phys. Lett., 93 (2008), p. 162507

[51] P. Murugavel; J.H. Lee; D. Lee; T.W. Noh; Y. Jo; M.H. Jung; Y.S. Oh; K.H. Kim Appl. Phys. Lett., 90 (2007), p. 142902

[52] X.B. Chen; T.M.H. Nguyen; D. Lee; S.Y. Jang; T.W. Noh; I.S. Yang Appl. Phys. Lett., 99 (2011), p. 052506

[53] D. Lee; H.S. Kim; S.Y. Jang; K.W. Joh; T.W. Noh; J. Yu; C.E. Lee; J.G. Yoon Phys. Rev. B, 81 (2010), p. 012101

[54] T. Kordel et al. Phys. Rev. B, 80 (2009), p. 045409

[55] T. Lonkai; D.G. Tomuta; U. Amann; J. Ihringer; R.W.A. Hendrikx; D.M. Tobbens; J.A. Mydosh Phys. Rev. B, 69 (2004), p. 134108

[56] A.A. Bosak; C. Dubourdieu; J.P. Senateur; O.Y. Gorbenko; A.R. Kaul J. Mater. Chem., 12 (2002), p. 800

[57] I.E. Graboy; A.A. Bosak; O.Y. Gorbenko; A.R. Kaul; C. Dubourdieu; J.P. Senateur; V.L. Svetchnikov; H.W. Zandbergen Chem. Mater., 15 (2003), p. 2632

[58] S. Venkatesan; C. Daumont; B.J. Kooi; B. Noheda; J.T.M. De Hosson Phys. Rev. B, 80 (2009), p. 214111

[59] C.J.M. Daumont; D. Mannix; S. Venkatesan; G. Catalan; D. Rubi; B.J. Kooi; J.T.M. De Hosson; B. Noheda J. Phys. Condens. Matter, 21 (2009), p. 182001

[60] D. Rubi; C. de Graaf; C.J.M. Daumont; D. Mannix; R. Broer; B. Noheda Phys. Rev. B, 79 (2009), p. 014416

[61] K.H. Wu; I.C. Gou; C.W. Luo; T.M. Uen; J.Y. Lin; J.Y. Juang; C.K. Chen; J.M. Lee; J.M. Chen Thin Solid Films, 518 (2010), p. 2275

[62] X. Martí; V. Skumryev; C. Ferrater; M.V. García-Cuenca; M. Varela; F. Sánchez; J. Fontcuberta Appl. Phys. Lett., 96 (2010), p. 222505

[63] S. Venkatesan; M. Doumlblinger; C. Daumont; B. Kooi; B. Noheda; J.T.M. De Hosson; C. Scheu Appl. Phys. Lett., 99 (2011), p. 222902

[64] C.L. Lu et al. Sci. Rep., 3 (2013), p. 3374

[65] T.H. Lin et al. J. Appl. Phys., 106 (2009), p. 103923

[66] J.G. Lin; T.C. Han; C.T. Wu; M.W. Chu; C.H. Chen J. Cryst. Growth, 310 (2008), p. 3878

[67] M. Ziese; A. Setzer; R. Wunderlich; C. Zandalazini; P. Esquinazi Phys. Rev. B, 84 (2011), p. 214424

[68] R. Wunderlich; C. Chiliotte; G. Bridoux; T. Maity; O. Kocabiyik; A. Setzer; M. Ziese; P. Esquinazi J. Magn. Magn. Mater., 324 (2012), p. 460

[69] Y.F. Hsiao; J.Y. Lai; J.Y. Lin; H.W. Fang; Y.T. Hung; C.W. Luo; K.H. Wu; T.M. Uen; J.Y. Juang Appl. Phys. Express, 6 (2013), p. 103201

[70] X. Martí; F. Sánchez; V. Skumryev; V. Laukhin; C. Ferrater; M.V. García-Cuenca; M. Varela; J. Fontcuberta Thin Solid Films, 516 (2008), p. 4899

[71] C.C. Hsieh; T.H. Lin; H.C. Shih; C.H. Hsu; C.W. Luo; J.Y. Lin; K.H. Wu; T.M. Uen; J.Y. Juang J. Appl. Phys., 104 (2008), p. 103912

[72] T.C. Han; J.G. Lin Appl. Phys. Lett., 94 (2009), p. 082502

[73] Y. Yu; X. Zhang; J.J. Yang; J.W. Wang; Y.G. Zhao J. Cryst. Growth, 338 (2012), p. 280

[74] T.C. Han; H.H. Chao Appl. Phys. Lett., 97 (2010), p. 232902

[75] N.V. Andreev; A. Sviridova; V.I. Chichkov; A.P. Volodin; C. Van Haesendonck; Y.M. Mukovskii J. Alloys Compd., 586 (2014), p. S343

[76] T.H. Lin et al. Appl. Phys. Lett., 92 (2008), p. 132503

[77] T.Y. Tsai; T.H. Lin; S. Slowry; C.W. Luo; K.H. Wu; J.Y. Lin; T.M. Uen; J.Y. Juang International Conference on Magnetism (Icm 2009), vol. 200, 2010, p. 012210

[78] D. Rubi; S. Venkatesan; B.J. Kooi; J.T.M. De Hosson; T.T.M. Palstra; B. Noheda Phys. Rev. B, 78 (2008), p. 020408

[79] A. Glavic; J. Voigt; J. Persson; Y.X. Su; J. Schubert; J. de Groot; W. Zande; T. Bruckel J. Alloys Compd., 509 (2011), p. 5061

[80] A. Glavic; C. Becher; J. Voigt; E. Schierle; E. Weschke; M. Fiebig; T. Bruckel Phys. Rev. B, 88 (2013), p. 054401

[81] M. Nakamura; Y. Tokunaga; M. Kawasaki; Y. Tokura Appl. Phys. Lett., 98 (2011), p. 082902

[82] Y. Hu; M. Bator; M. Kenzelmann; T. Lippert; C. Niedermayer; C.W. Schneider; A. Wokaun Appl. Surf. Sci., 258 (2012), p. 9323

[83] M. Bator et al., 12th International Conference on Muon Spin Rotation, Relaxation and Resonance (Musr2011), vol. 30, 2012, p. 137

[84] J.S. White et al. Phys. Rev. Lett., 111 (2013), p. 037201

[85] Y. Hu; D. Stender; M. Medarde; T. Lippert; A. Wokaun; C.W. Schneider Appl. Surf. Sci., 278 (2013), p. 92

[86] Y.M. Cui; Y.F. Tian; A.X. Shan; C.P. Chen; R.M. Wang Appl. Phys. Lett., 101 (2012), p. 122406

[87] V. Skumryev; M.D. Kuz'min; M. Gospodinov; J. Fontcuberta Phys. Rev. B, 79 (2009), p. 212414

[88] N. Jehanathan; O. Lebedev; I. Gelard; C. Dubourdieu; G. Van Tendeloo Nanotechnology, 21 (2010), p. 075705

[89] A. Munoz; M.T. Casais; J.A. Alonso; M.J. Martinez-Lope; J.L. Martinez; M.T. Fernandez-Diaz Inorg. Chem., 40 (2001), p. 1020

[90] B. Lorenz; Y.Q. Wang; C.W. Chu Phys. Rev. B, 76 (2007), p. 104405

[91] S.M. Feng; Y.S. Chai; J.L. Zhu; N. Manivannan; Y.S. Oh; L.J. Wang; Y.S. Yang; C.Q. Jin; K.H. Kim New J. Phys., 12 (2010), p. 073006

[92] T.H. Lin et al. J. Phys. Condens. Matter, 21 (2009), p. 026013

[93] M. Garganourakis; Y. Bodenthin; R.A. de Souza; V. Scagnoli; A. Donni; M. Tachibana; H. Kitazawa; E. Takayama-Muromachi; U. Staub Phys. Rev. B, 86 (2012), p. 054425

[94] S. Ishiwata; Y. Kaneko; Y. Tokunaga; Y. Taguchi; T. Arima; Y. Tokura Phys. Rev. B, 81 (2010), p. 100411

[95] M. Mochizuki; N. Furukawa; N. Nagaosa Phys. Rev. B, 84 (2011)

[96] M. Tachibana; T. Shimoyama; H. Kawaji; T. Atake; E. Takayama-Muromachi Phys. Rev. B, 75 (2007), p. 144425

[97] Y.H. Huang; H. Fjellvag; M. Karppinen; C. Hauback; H. Yamauchi; J.B. Goodenough Chem. Mater., 18 (2003), p. 2130

[98] V.Y. Pomjakushin et al. New J. Phys., 11 (2009), p. 043019

[99] T. Goto; T. Kimura; G. Lawes; A.P. Ramirez; Y. Tokura Phys. Rev. Lett., 92 (2004), p. 257201

[100] W. Ratcliff; D. Kan; W.C. Chen; S. Watson; S.X. Chi; R. Erwin; G.J. McIntyre; S.C. Capelli; I. Takeuchi Adv. Funct. Mater., 21 (2011), p. 1567

[101] H. Jang et al. Phys. Rev. Lett., 106 (2011), p. 047203

[102] B.J. Kirby; D. Kan; A. Luykx; M. Murakami; D. Kundaliya; I. Takeuchi J. Appl. Phys., 105 (2009), p. 07d917

[103] N.O. Moreno; J.G.S. Duque; P.G. Pagliuso; C. Rettori; R.R. Urbano; T. Kimura J. Magn. Magn. Mater., 310 (2007), p. E364

[104] X. Martí et al. J. Magn. Magn. Mater., 321 (2009), p. 1719

[105] C.J.M. Daumont; D. Mannix; S. Venkatesan; G. Catalan; D. Rubi; B.J. Kooi; J.T.M. De Hosson; B. Noheda J. Phys. Condens. Matter, 21 (2009), p. 182001

[106] S. Farokhipoor et al. Nature, 515 (2014), p. 379 (After completion of this review suggested that Mn-segregation at twin boundaries may lead to a local non-collinear spin arrangement that could be responsible for the observed magnetic remanence)

[107] J. Qi; L. Yan; H.D. Zhou; J.X. Zhu; S.A. Trugman; A.J. Taylor; Q.X. Jia; R.P. Prasankumar Appl. Phys. Lett., 101 (2012), p. 122904

[108] A. Munoz; J.A. Alonso; M.T. Casais; M.J. Martinez-Lope; J.L. Martinez; M.T. Fernandez-Diaz J. Phys. Condens. Matter, 14 (2002), p. 3285

[109] X. Martí; F. Sánchez; J. Fontcuberta; M.V. García-Cuenca; C. Ferrater; M. Varela J. Appl. Phys., 99 (2006), p. 08p302

[110] X. Martí; V. Skumryev; V. Laukhin; R. Bachelet; C. Ferrater; M.V. García-Cuenca; M. Varela; F. Sánchez; J. Fontcuberta J. Appl. Phys., 108 (2010), p. 123917

[111] X. Martí; V. Skumryev; V. Laukhin; F. Sánchez; M.V. García-Cuenca; C. Ferrater; M. Varela; J. Fontcuberta J. Mater. Res., 22 (2007), p. 2096

[112] X. Martí; I. Fina; V. Skumryev; C. Ferrater; M. Varela; L. Fábrega; F. Sánchez; J. Fontcuberta Appl. Phys. Lett., 95 (2009), p. 142903

[113] I. Fina; X. Marti; L. Fábrega; F. Sánchez; J. Fontcuberta Thin Solid Films, 518 (2010), p. 4710

[114] I. Fina; L. Fábrega; X. Marti; F. Sánchez; J. Fontcuberta Appl. Phys. Lett., 97 (2010), p. 232905

[115] I. Fina; L. Fábrega; X. Marti; F. Sánchez; J. Fontcuberta Appl. Phys. Lett., 99 (2011), p. 219901

[116] J. Fontcuberta Phase Transit., 85 (2012), p. 183

[117] I. Fina; V. Skumryev; D. O'Flynn; G. Balakrishnan; J. Fontcuberta Phys. Rev. B, 88 (2013), p. 100403

[118] H. Murakawa; Y. Onose; F. Kagawa; S. Ishiwata; Y. Kaneko; Y. Tokura Phys. Rev. Lett., 101 (2008), p. 197207

[119] I. Fina; L. Fábrega; X. Marti; F. Sánchez; J. Fontcuberta Phys. Rev. Lett., 107 (2011), p. 257601

[120] D. Meier; N. Leo; M. Maringer; T. Lottermoser; M. Fiebig; P. Becker; L. Bohaty Phys. Rev. B, 80 (2009), p. 224420

[121] J. Fontcuberta; I. Fina; L. Fábrega; F. Sánchez; X. Marti; V. Skumryev Phase Transit., 84 (2011), p. 555

[122] F. Jimenez-Villacorta; J.A. Gallastegui; I. Fina; X. Martí; J. Fontcuberta Phys. Rev. B, 86 (2012), p. 024420

[123] H. Wadati et al. Phys. Rev. Lett., 108 (2012), p. 047203

[124] T. Katsufuji; S. Mori; M. Masaki; Y. Moritomo; N. Yamamoto; H. Takagi Phys. Rev. B, 64 (2001), p. 104419

[125] T. Choi; Y. Horibe; H.T. Yi; Y.J. Choi; W.D. Wu; S.W. Cheong Nat. Mater., 9 (2010), p. 253

[126] E.B. Lochocki; S. Park; N. Lee; S.W. Cheong; W.D. Wu Appl. Phys. Lett., 99 (2011), p. 232901

[127] W.D. Wu; Y. Horibe; N. Lee; S.W. Cheong; J.R. Guest Phys. Rev. Lett., 108 (2012), p. 077203

[128] Y.N. Geng; N. Lee; Y.J. Choi; S.W. Cheong; W.D. Wu Nano Lett., 12 (2012), p. 6055

[129] H. Das; A.L. Wysocki; Y.N. Geng; W.D. Wu; C.J. Fennie Nat. Commun., 5 (2014), p. 2998

  • Mohsin Saleem; Muhammad Zubair Khan; Gwangseop Lee; Muhammad Saad Ur Rahman; Fatima Rehan; Jung-Hyuk Koh Multiferroic Materials; Synthesis, Properties, and Sintering, Ferroic Materials - Understanding, Development, and Utilization [Working Title] (2025) | DOI:10.5772/intechopen.1008834
  • Y. Naveen Kumar; A. Paul Blessington Selvadurai; N. Aparnadevi; C. Venkateswaran Impact of post-annealing temperature on the structure, surface topography and magnetic properties of sputtered GdMnO3 thin films, Applied Physics A, Volume 130 (2024) no. 6 | DOI:10.1007/s00339-024-07622-4
  • Kanata Watanabe; Hotaka Sakaguchi; Fatima Zahra Chafi; Masami Nishikawa; Hironori Asada; Martin Veis; Takayuki Ishibashi Structural and optical properties of hexagonal and orthorhombic YMnO3 thin films prepared by metal-organic decomposition method, Japanese Journal of Applied Physics, Volume 63 (2024) no. 11, p. 11SP16 | DOI:10.35848/1347-4065/ad86ca
  • M. M. Abd El‑Raheem; Mahrous R. Ahmed; Sara A. Mohamed Influence of the rate of flow of argon on the optical properties of the MnSmO3 films prepared by magnetron sputtering technique, Journal of Materials Science: Materials in Electronics, Volume 35 (2024) no. 17 | DOI:10.1007/s10854-024-12737-8
  • Selim E. Toktaş; Serkan Dag Magnetoelectroelastic response of functionally graded multiferroic coatings under moving Hertzian contact, Journal of Mechanics of Materials and Structures, Volume 19 (2024) no. 3, p. 343 | DOI:10.2140/jomms.2024.19.343
  • John C. Mantilla; Luiz C.C.M. Nagamine; Daniel R. Cornejo; Renato Cohen; Wesley de Oliveira; Paulo E.N. Souza; Sebastião W. da Silva; Fermin F.H. Aragón; Pedro L. Gastelois; Paulo C. Morais; José A.H. Coaquira Structural, morphological, and magnetic characterizations of (Fe0.25Mn0.75)2O3 nanocrystals: A comprehensive stoichiometric determination, Materials Chemistry and Physics, Volume 328 (2024), p. 129943 | DOI:10.1016/j.matchemphys.2024.129943
  • Hong-Miao Zhao; Hang Zhou; Wei Gan; Hui Han; Hui Li; Rui-Chun Xiao Optical fingerprints of two-dimensional interlayer-sliding multiferroic materials, Physical Review B, Volume 110 (2024) no. 12 | DOI:10.1103/physrevb.110.125413
  • Hao Li; Yali Yang; Shiqing Deng; Hui Liu; Tianyu Li; Yuzhu Song; He Bai; Tao Zhu; Jiaou Wang; Huanhua Wang; Er-Jia Guo; Xianran Xing; Hongjun Xiang; Jun Chen Significantly Enhanced Room-Temperature Ferromagnetism in Multiferroic EuFeO3−δ Thin Films, Nano Letters, Volume 23 (2023) no. 4, p. 1273 | DOI:10.1021/acs.nanolett.2c04447
  • S. Holbein; P. Steffens; S. Biesenkamp; J. Ollivier; A. C. Komarek; M. Baum; M. Braden Spin-wave dispersion and magnon chirality in multiferroicTbMnO3, Physical Review B, Volume 108 (2023) no. 10 | DOI:10.1103/physrevb.108.104404
  • Eric Bousquet; Andrés Cano Non-collinear magnetism multiferroicity: the perovskite case, Physical Sciences Reviews, Volume 8 (2023) no. 4, p. 479 | DOI:10.1515/psr-2019-0071
  • Sara Passuti; Julien Varignon; Adrian David; Philippe Boullay Scanning Precession Electron Tomography (SPET) for Structural Analysis of Thin Films along Their Thickness, Symmetry, Volume 15 (2023) no. 7, p. 1459 | DOI:10.3390/sym15071459
  • Johanna Nordlander; Margaret A. Anderson; Charles M. Brooks; Megan E. Holtz; Julia A. Mundy Epitaxy of hexagonal ABO3 quantum materials, Applied Physics Reviews, Volume 9 (2022) no. 3 | DOI:10.1063/5.0098277
  • Chengchao Xu; Jun Li; Huanfang Tian; Zi-An Li; Huaixin Yang; Jianqi Li Flux Method Growth and Structure and Properties Characterization of Rare-Earth Iron Oxides Lu1−xScxFeO3 Single Crystals, Crystals, Volume 12 (2022) no. 6, p. 769 | DOI:10.3390/cryst12060769
  • A.M. Zhang; H.F. Cao; X.X. Pan; J.J. Zhu; X.S. Wu Strain-modulated structure distortion and magnetic properties of orthorhombic LuMnO3 thin films, Thin Solid Films, Volume 750 (2022), p. 139186 | DOI:10.1016/j.tsf.2022.139186
  • Igor Hernandes Gomes Marques; Robert Saraiva Matos; Yonny Romaguera-Barcelay; Ştefan Ţălu; Joaquim Agostinho Moreira; Abilio Almeida; Javier Perez de Cruz; Henrique Duarte da Fonseca Filho; Matjaz Valant Investigation of Stereometric and Fractal Patterns of Spin‐Coated LuMnO3 Thin Films, Advances in Materials Science and Engineering, Volume 2021 (2021) no. 1 | DOI:10.1155/2021/9912247
  • Heidemarie Schmidt Prospects for application of ferroelectric manganites with controlled vortex density, Applied Physics Letters, Volume 118 (2021) no. 14 | DOI:10.1063/5.0032988
  • Yunwei Sheng; Ignasi Fina; Marin Gospodinov; Josep Fontcuberta Switchable photovoltaic response in hexagonal LuMnO3 single crystals, Applied Physics Letters, Volume 118 (2021) no. 23 | DOI:10.1063/5.0053379
  • Lanlan Xu; Qingshi Liu; Junling Meng; Wuping Liao; Xiaojuan Liu; Hongjie Zhang Eu–Mn Charge Transfer and the Strong Charge–Spin–Electronic Coupling Behavior in EuMnO3, Inorganic Chemistry, Volume 60 (2021) no. 3, p. 1367 | DOI:10.1021/acs.inorgchem.0c02498
  • Yunwei Sheng; Ignasi Fina; Marin Gospodinov; Aaron M. Schankler; Andrew M. Rappe; Josep Fontcuberta Bulk photovoltaic effect in hexagonal LuMnO3 single crystals, Physical Review B, Volume 104 (2021) no. 18 | DOI:10.1103/physrevb.104.184116
  • G.E. Tongue Magne; R.M. Keumo Tsiaze; A.J. Fotué; N.M. Hounkonnou; L.C. Fai Cumulative effects of fluctuations and magnetoelectric coupling in two-dimensional RMnO3 (R = Tb, Lu and Y) multiferroics, Physics Letters A, Volume 400 (2021), p. 127305 | DOI:10.1016/j.physleta.2021.127305
  • F. Shao; Z. Y. Ren; C. J. Lu; Y. D. Yang; Q. Zhan; Z. P. Li; J. K. Chen; Y. Wu; K. K. Meng; X. G. Xu; J. Miao; Y. Jiang Self-Assembled Hexagonal Lu1–xInxFeO3 Nanopillars Embedded in Orthorhombic Lu1–xInxFeO3 Nanoparticle Matrixes as Room-Temperature Multiferroic Thin Films for Memory Devices and Spintronic Applications, ACS Applied Nano Materials, Volume 3 (2020) no. 8, p. 7516 | DOI:10.1021/acsanm.0c01139
  • Menglei Li; Hengxin Tan; Wenhui Duan Hexagonal rare-earth manganites and ferrites: a review of improper ferroelectricity, magnetoelectric coupling, and unusual domain walls, Physical Chemistry Chemical Physics, Volume 22 (2020) no. 26, p. 14415 | DOI:10.1039/d0cp02195d
  • R. Mandal; M. Hirsbrunner; V. Roddatis; R. Gruhl; L. Schüler; U. Roß; S. Merten; P. Gegenwart; V. Moshnyaga Strain-driven structure-ferroelectricity relationship in hexagonal TbMnO3 films, Physical Review B, Volume 102 (2020) no. 10 | DOI:10.1103/physrevb.102.104106
  • N. El Mekkaoui; S. Idrissi; S. Mtougui; I. El Housni; R. Khalladi; H. Labrim; S. Ziti; L. Bahmad Monte Carlo study of the manganite oxide perovskite YMnO3, Applied Physics A, Volume 125 (2019) no. 9 | DOI:10.1007/s00339-019-2880-6
  • Jaianth Vijayakumar; David Bracher; Tatiana M. Savchenko; Michael Horisberger; Frithjof Nolting; C. A. F. Vaz Electric field control of magnetism in Si3N4 gated Pt/Co/Pt heterostructures, Journal of Applied Physics, Volume 125 (2019) no. 11 | DOI:10.1063/1.5083148
  • Chao Ji; Yancheng Wang; Bixiang Guo; Xiaofan Shen; Qunyong Luo; Jianli Wang; Xianwen Meng; Junting Zhang; Xiaomei Lu; Jinsong Zhu Strain engineering of magnetic and orbital order in perovskite LuMnO3 epitaxial films, Physical Review B, Volume 100 (2019) no. 17 | DOI:10.1103/physrevb.100.174417
  • D. Kumar; A. David; A. Fouchet; A. Pautrat; J. Varignon; C. U. Jung; U. Lüders; B. Domengès; O. Copie; P. Ghosez; W. Prellier Magnetism tailored by mechanical strain engineering in PrVO3 thin films, Physical Review B, Volume 99 (2019) no. 22 | DOI:10.1103/physrevb.99.224405
  • R.M. Eremina; E.M. Moshkina; A.R. Muftakhutdinov; I.F. Gilmutdinov; N.M. Lyadov Magnetic properties of the warwickite MnMgBO4, Solid State Communications, Volume 290 (2019), p. 64 | DOI:10.1016/j.ssc.2018.12.019
  • M. Savinov; V. Bovtun; E. Tereshina-Chitrova; A. Stupakov; A. Dejneka; M. Tyunina Dielectric relaxation in epitaxial films of paraelectric-magnetic SrTiO3-SrMnO3 solid solution, Applied Physics Letters, Volume 112 (2018) no. 5 | DOI:10.1063/1.5017667
  • Dong Chen; Yu-Jia Wang; Yin-Lian Zhu; Xiu-Liang Ma Effect of transition metal (TM) doping on structural and magnetic properties in hexagonal YMn0.917TM0.083O3 systems, Heliyon, Volume 4 (2018) no. 12, p. e00993 | DOI:10.1016/j.heliyon.2018.e00993
  • Weipeng Wang; Fuyang Liu; Xuejing Zhang; Xi Shen; Yuan Yao; Yanguo Wang; Banggui Liu; Xiaoyang Liu; Richeng Yu Two types of B-site ordered structures of the double perovskite Y2CrMnO6: experimental identification and first-principles study, Inorganic Chemistry Frontiers, Volume 5 (2018) no. 1, p. 217 | DOI:10.1039/c7qi00686a
  • J. T. Zhang; C. Ji; J. L. Wang; W. S. Xia; X. M. Lu; J. S. Zhu Stabilization of E -type magnetic order caused by epitaxial strain in perovskite manganites, Physical Review B, Volume 97 (2018) no. 8 | DOI:10.1103/physrevb.97.085124
  • Junting Zhang; Chao Ji; Yanyan Shangguan; Bixiang Guo; Jianli Wang; Fengzhen Huang; Xiaomei Lu; Jinsong Zhu Strain-driven magnetic phase transitions from an antiferromagnetic to a ferromagnetic state in perovskite RMnO3 films, Physical Review B, Volume 98 (2018) no. 19 | DOI:10.1103/physrevb.98.195133
  • M.-A. Husanu; C. A. F. Vaz Spectroscopic Characterisation of Multiferroic Interfaces, Spectroscopy of Complex Oxide Interfaces, Volume 266 (2018), p. 245 | DOI:10.1007/978-3-319-74989-1_10
  • R. Eremina; Z. Seidov; I. Ibrahimov; M. Najafzade; M. Aljanov; D. Mamedov; T. Gavrilova; I. Gilmutdinov; V. Chichkov; N. Andreev Magnetization of manganite thin films on ferroelectric substrates, Journal of Magnetism and Magnetic Materials, Volume 440 (2017), p. 179 | DOI:10.1016/j.jmmm.2016.12.108
  • H P Martins; R J O Mossanek; X Martí; F Sánchez; J Fontcuberta; M Abbate Mn 3dbands and Y–O hybridization of hexagonal and orthorhombic YMnO3thin films, Journal of Physics: Condensed Matter, Volume 29 (2017) no. 29, p. 295501 | DOI:10.1088/1361-648x/aa75e3
  • Kenta Shimamoto; Saumya Mukherjee; Nicholas S. Bingham; Anna K. Suszka; Thomas Lippert; Christof Niedermayer; Christof W. Schneider Single-axis-dependent structural and multiferroic properties of orthorhombic RMnO3(R=Gd–Lu), Physical Review B, Volume 95 (2017) no. 18 | DOI:10.1103/physrevb.95.184105
  • Shiqing Deng; Shaobo Cheng; Ming Liu; Jing Zhu Modulating Magnetic Properties by Tailoring In-Plane Domain Structures in Hexagonal YMnO3 Films, ACS Applied Materials Interfaces, Volume 8 (2016) no. 38, p. 25379 | DOI:10.1021/acsami.6b08024
  • Eric Bousquet; Andrés Cano Non-collinear magnetism in multiferroic perovskites, Journal of Physics: Condensed Matter, Volume 28 (2016) no. 12, p. 123001 | DOI:10.1088/0953-8984/28/12/123001
  • Maged F. Bekheet; Ingrid Svoboda; Na Liu; Lkhamsuren Bayarjargal; Elisabeth Irran; Christian Dietz; Robert W. Stark; Ralf Riedel; Aleksander Gurlo Ferroelectric InMnO3: Growth of single crystals, structure and high-temperature phase transitions, Journal of Solid State Chemistry, Volume 241 (2016), p. 54 | DOI:10.1016/j.jssc.2016.05.031
  • Artur Glavic; Hemant Dixit; Valentino R. Cooper; Adam A. Aczel Constructing a magnetic handle for antiferromagnetic manganites, Physical Review B, Volume 93 (2016) no. 14 | DOI:10.1103/physrevb.93.140413
  • A.J.C. Buurma; G.R. Blake; T.T.M. Palstra; U. Adem Multiferroic Materials: Physics and Properties, Reference Module in Materials Science and Materials Engineering (2016) | DOI:10.1016/b978-0-12-803581-8.09245-6
  • Hongzhuang Pang; Fengyuan Zhang; Min Zeng; Xingsen Gao; Minghui Qin; Xubing Lu; Jinwei Gao; Jiyan Dai; Qiliang Li Preparation of epitaxial hexagonal YMnO3 thin films and observation of ferroelectric vortex domains, npj Quantum Materials, Volume 1 (2016) no. 1 | DOI:10.1038/npjquantmats.2016.15
  • Ni Hu; Chengliang Lu; Zhengcai Xia; Rui Xiong; Pengfei Fang; Jing Shi; Jun-Ming Liu Multiferroicity and Magnetoelectric Coupling in TbMnO3 Thin Films, ACS Applied Materials Interfaces, Volume 7 (2015) no. 48, p. 26603 | DOI:10.1021/acsami.5b08091
  • C A F Vaz; U Staub Magnetoelectronics—electric field control of magnetism in the solid state, Journal of Physics: Condensed Matter, Volume 27 (2015) no. 50, p. 500301 | DOI:10.1088/0953-8984/27/50/500301

Cité par 45 documents. Sources : Crossref

Commentaires - Politique