[Films fins de RMnO3 multiferroïque]
Les matériaux multiferroïques ont reçu une attention étonnante au cours des dernières décades liée à la possibilité de couplage entre les ordres ferroïques et à son potentiel pour de nouvelles applications et de nouveaux concepts de composants. De ce fait, une nouvelle connaissance des mécanismes de couplage et de la science des matériaux a émergé. Les pérovskites multiferroïques RMnO3 sont au centre de ces progrès, en ce sens qu'elles fournissent une plateforme adaptée pour façonner les interactions spin–spin et spin–réseau.
En ce qui concerne les applications, le développement de films minces de matériaux multiferroïques a aussi énormément progressé, et de nos jours des films minces de manganites avec des propriétés similaires à celles des matériaux massifs existent. Nous passons en revue ici les résultats obtenus dans le domaine de la croissance de couches minces épitaxiés de RMnO3 hexagonal et orthorhombique et de la caractérisation de leurs propriétés magnétiques et ferroélectriques. Nous discutons certains enjeux et proposons quelques idées pour des recherches et développements futurs.
Multiferroic materials have received an astonishing attention in the last decades due to expectations that potential coupling between distinct ferroic orders could inspire new applications and new device concepts. As a result, a new knowledge on coupling mechanisms and materials science has dramatically emerged. Multiferroic RMnO3 perovskites are central to this progress, providing a suitable platform to tailor spin–spin and spin–lattice interactions.
With views towards applications, the development of thin films of multiferroic materials have also progressed enormously and nowadays thin-film manganites are available, with properties mimicking those of bulk compounds. Here we review achievements on the growth of hexagonal and orthorhombic RMnO3 epitaxial thin films and the characterization of their magnetic and ferroelectric properties, we discuss some challenging issues, and we suggest some guidelines for future research and developments.
Mots-clés : Pérovskites multiferroïques, Couches minces antiferromagnétiques à l'ordre cycloïdal, Couches minces ferroélectriques hexagonales, Couches fines ferroélectriques d'oxydes de manganèse
Josep Fontcuberta 1
@article{CRPHYS_2015__16_2_204_0, author = {Josep Fontcuberta}, title = {Multiferroic {RMnO\protect\textsubscript{3}} thin films}, journal = {Comptes Rendus. Physique}, pages = {204--226}, publisher = {Elsevier}, volume = {16}, number = {2}, year = {2015}, doi = {10.1016/j.crhy.2015.01.012}, language = {en}, }
Josep Fontcuberta. Multiferroic RMnO3 thin films. Comptes Rendus. Physique, Multiferroic materials and heterostructures / Matériaux et hétérostructures multiferroïques, Volume 16 (2015) no. 2, pp. 204-226. doi : 10.1016/j.crhy.2015.01.012. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.01.012/
[1] et al. Science, 299 (2003), p. 1719
[2] Phys. Rev. B, 76 (2007), p. 024116
[3] Int. Sch. Res. Not., Condens. Matter Phys., 2013 (2013), p. 1
[4] et al. Science, 303 (2004), p. 661
[5] et al. Phys. Rev. Lett., 97 (2006), p. 227201
[6] et al. Nat. Mater., 7 (2008), p. 478
[7] Phys. Rev. Lett., 106 (2011), p. 057206
[8] et al. Science, 327 (2010), p. 1106
[9] J. Phys. Condens. Matter, 20 (2008), p. 434221
[10] J. Appl. Phys., 103 (2008), p. 031101
[11] , Annual Reviews Materials Research, vol. 40, Annual Reviews, Palo Alto, CA, USA, 2010, p. 153
(D.R. Clarke; M. Ruhle; F. Zok, eds.)[12] Adv. Mater., 22 (2010), p. 2900
[13] Adv. Mater., 23 (2011), p. 1062
[14] Nature, 426 (2003), p. 55
[15] , Annual Reviews Materials Research, vol. 37, Annual Reviews, Palo Alto, CA, USA, 2007, p. 387
[16] Adv. Mater., 22 (2010), p. 1554
[17] Phys. Rev. B, 72 (2005), p. 020406
[18] Appl. Phys. Lett., 100 (2012), p. 022902
[19] Nat. Mater., 6 (2007), p. 296
[20] J. Solid State Chem., 195 (2012), p. 32
[21] Mater. Sci. Eng., R Rep., 68 (2010), p. 89
[22] J. Phys. D, Appl. Phys., 44 (2011), p. 243001
[23] Solid State Commun., 4 (1966), p. 125
[24] Solid State Commun., 14 (1974), p. 941
[25] Chem. Mater., 10 (1998), p. 2592
[26] Phys. Rev. Lett., 87 (2001), p. 125501
[27] Solid State Commun., 146 (2008), p. 152
[28] Phys. Rev. B, 80 (2009), p. 134416
[29] Phys. Rev. Lett., 84 (2000), p. 5620
[30] Physics, 2 (2009), p. 20
[31] J. Phys. Condens. Matter, 20 (2008), p. 434204
[32] Phys. Rev. Lett., 99 (2007), p. 227201
[33] Phys. Rev. B, 73 (2006), p. 094434
[34] Phys. Rev. Lett., 97 (2006), p. 227204
[35] Annu. Rev. Condens. Matter Phys., 3 (2012), p. 93
[36] Appl. Phys. Lett., 104 (2014), p. 082906
[37] Adv. Mater., 26 (2014), p. 4645
[38] Nat. Mater., 3 (2004), p. 164
[39] et al. Thin Solid Films, 400 (2001), p. 149
[40] et al. Adv. Mater., 18 (2006), p. 3125
[41] Appl. Phys. Lett., 90 (2007), p. 012903
[42] J. Cryst. Growth, 310 (2008), p. 829
[43] Appl. Phys. Lett., 69 (1996), p. 1011
[44] J. Appl. Phys., 93 (2003), p. 5563
[45] C. R. Hebd. Séances Acad. Sci., 256 (1963), p. 1958
[46] J. Supercond. Nov. Magn., 26 (2013), p. 801
[47] Appl. Phys. Lett., 92 (2008), p. 232506
[48] et al. J. Cryst. Growth, 299 (2007), p. 288
[49] J. Appl. Phys., 93 (2003), p. 6990
[50] Appl. Phys. Lett., 93 (2008), p. 162507
[51] Appl. Phys. Lett., 90 (2007), p. 142902
[52] Appl. Phys. Lett., 99 (2011), p. 052506
[53] Phys. Rev. B, 81 (2010), p. 012101
[54] et al. Phys. Rev. B, 80 (2009), p. 045409
[55] Phys. Rev. B, 69 (2004), p. 134108
[56] J. Mater. Chem., 12 (2002), p. 800
[57] Chem. Mater., 15 (2003), p. 2632
[58] Phys. Rev. B, 80 (2009), p. 214111
[59] J. Phys. Condens. Matter, 21 (2009), p. 182001
[60] Phys. Rev. B, 79 (2009), p. 014416
[61] Thin Solid Films, 518 (2010), p. 2275
[62] Appl. Phys. Lett., 96 (2010), p. 222505
[63] Appl. Phys. Lett., 99 (2011), p. 222902
[64] et al. Sci. Rep., 3 (2013), p. 3374
[65] et al. J. Appl. Phys., 106 (2009), p. 103923
[66] J. Cryst. Growth, 310 (2008), p. 3878
[67] Phys. Rev. B, 84 (2011), p. 214424
[68] J. Magn. Magn. Mater., 324 (2012), p. 460
[69] Appl. Phys. Express, 6 (2013), p. 103201
[70] Thin Solid Films, 516 (2008), p. 4899
[71] J. Appl. Phys., 104 (2008), p. 103912
[72] Appl. Phys. Lett., 94 (2009), p. 082502
[73] J. Cryst. Growth, 338 (2012), p. 280
[74] Appl. Phys. Lett., 97 (2010), p. 232902
[75] J. Alloys Compd., 586 (2014), p. S343
[76] et al. Appl. Phys. Lett., 92 (2008), p. 132503
[77] International Conference on Magnetism (Icm 2009), vol. 200, 2010, p. 012210
[78] Phys. Rev. B, 78 (2008), p. 020408
[79] J. Alloys Compd., 509 (2011), p. 5061
[80] Phys. Rev. B, 88 (2013), p. 054401
[81] Appl. Phys. Lett., 98 (2011), p. 082902
[82] Appl. Surf. Sci., 258 (2012), p. 9323
[83] et al., 12th International Conference on Muon Spin Rotation, Relaxation and Resonance (Musr2011), vol. 30, 2012, p. 137
[84] et al. Phys. Rev. Lett., 111 (2013), p. 037201
[85] Appl. Surf. Sci., 278 (2013), p. 92
[86] Appl. Phys. Lett., 101 (2012), p. 122406
[87] Phys. Rev. B, 79 (2009), p. 212414
[88] Nanotechnology, 21 (2010), p. 075705
[89] Inorg. Chem., 40 (2001), p. 1020
[90] Phys. Rev. B, 76 (2007), p. 104405
[91] New J. Phys., 12 (2010), p. 073006
[92] et al. J. Phys. Condens. Matter, 21 (2009), p. 026013
[93] Phys. Rev. B, 86 (2012), p. 054425
[94] Phys. Rev. B, 81 (2010), p. 100411
[95] Phys. Rev. B, 84 (2011)
[96] Phys. Rev. B, 75 (2007), p. 144425
[97] Chem. Mater., 18 (2003), p. 2130
[98] et al. New J. Phys., 11 (2009), p. 043019
[99] Phys. Rev. Lett., 92 (2004), p. 257201
[100] Adv. Funct. Mater., 21 (2011), p. 1567
[101] et al. Phys. Rev. Lett., 106 (2011), p. 047203
[102] J. Appl. Phys., 105 (2009), p. 07d917
[103] J. Magn. Magn. Mater., 310 (2007), p. E364
[104] et al. J. Magn. Magn. Mater., 321 (2009), p. 1719
[105] J. Phys. Condens. Matter, 21 (2009), p. 182001
[106] et al. Nature, 515 (2014), p. 379 (After completion of this review suggested that Mn-segregation at twin boundaries may lead to a local non-collinear spin arrangement that could be responsible for the observed magnetic remanence)
[107] Appl. Phys. Lett., 101 (2012), p. 122904
[108] J. Phys. Condens. Matter, 14 (2002), p. 3285
[109] J. Appl. Phys., 99 (2006), p. 08p302
[110] J. Appl. Phys., 108 (2010), p. 123917
[111] J. Mater. Res., 22 (2007), p. 2096
[112] Appl. Phys. Lett., 95 (2009), p. 142903
[113] Thin Solid Films, 518 (2010), p. 4710
[114] Appl. Phys. Lett., 97 (2010), p. 232905
[115] Appl. Phys. Lett., 99 (2011), p. 219901
[116] Phase Transit., 85 (2012), p. 183
[117] Phys. Rev. B, 88 (2013), p. 100403
[118] Phys. Rev. Lett., 101 (2008), p. 197207
[119] Phys. Rev. Lett., 107 (2011), p. 257601
[120] Phys. Rev. B, 80 (2009), p. 224420
[121] Phase Transit., 84 (2011), p. 555
[122] Phys. Rev. B, 86 (2012), p. 024420
[123] et al. Phys. Rev. Lett., 108 (2012), p. 047203
[124] Phys. Rev. B, 64 (2001), p. 104419
[125] Nat. Mater., 9 (2010), p. 253
[126] Appl. Phys. Lett., 99 (2011), p. 232901
[127] Phys. Rev. Lett., 108 (2012), p. 077203
[128] Nano Lett., 12 (2012), p. 6055
[129] Nat. Commun., 5 (2014), p. 2998
- Multiferroic Materials; Synthesis, Properties, and Sintering, Ferroic Materials - Understanding, Development, and Utilization [Working Title] (2025) | DOI:10.5772/intechopen.1008834
- Impact of post-annealing temperature on the structure, surface topography and magnetic properties of sputtered GdMnO3 thin films, Applied Physics A, Volume 130 (2024) no. 6 | DOI:10.1007/s00339-024-07622-4
- Structural and optical properties of hexagonal and orthorhombic YMnO3 thin films prepared by metal-organic decomposition method, Japanese Journal of Applied Physics, Volume 63 (2024) no. 11, p. 11SP16 | DOI:10.35848/1347-4065/ad86ca
- Influence of the rate of flow of argon on the optical properties of the MnSmO3 films prepared by magnetron sputtering technique, Journal of Materials Science: Materials in Electronics, Volume 35 (2024) no. 17 | DOI:10.1007/s10854-024-12737-8
- Magnetoelectroelastic response of functionally graded multiferroic coatings under moving Hertzian contact, Journal of Mechanics of Materials and Structures, Volume 19 (2024) no. 3, p. 343 | DOI:10.2140/jomms.2024.19.343
- Structural, morphological, and magnetic characterizations of (Fe0.25Mn0.75)2O3 nanocrystals: A comprehensive stoichiometric determination, Materials Chemistry and Physics, Volume 328 (2024), p. 129943 | DOI:10.1016/j.matchemphys.2024.129943
- Optical fingerprints of two-dimensional interlayer-sliding multiferroic materials, Physical Review B, Volume 110 (2024) no. 12 | DOI:10.1103/physrevb.110.125413
- Significantly Enhanced Room-Temperature Ferromagnetism in Multiferroic EuFeO3−δ Thin Films, Nano Letters, Volume 23 (2023) no. 4, p. 1273 | DOI:10.1021/acs.nanolett.2c04447
- Spin-wave dispersion and magnon chirality in multiferroicTbMnO3, Physical Review B, Volume 108 (2023) no. 10 | DOI:10.1103/physrevb.108.104404
- Non-collinear magnetism multiferroicity: the perovskite case, Physical Sciences Reviews, Volume 8 (2023) no. 4, p. 479 | DOI:10.1515/psr-2019-0071
- Scanning Precession Electron Tomography (SPET) for Structural Analysis of Thin Films along Their Thickness, Symmetry, Volume 15 (2023) no. 7, p. 1459 | DOI:10.3390/sym15071459
- Epitaxy of hexagonal ABO3 quantum materials, Applied Physics Reviews, Volume 9 (2022) no. 3 | DOI:10.1063/5.0098277
- Flux Method Growth and Structure and Properties Characterization of Rare-Earth Iron Oxides Lu1−xScxFeO3 Single Crystals, Crystals, Volume 12 (2022) no. 6, p. 769 | DOI:10.3390/cryst12060769
- Strain-modulated structure distortion and magnetic properties of orthorhombic LuMnO3 thin films, Thin Solid Films, Volume 750 (2022), p. 139186 | DOI:10.1016/j.tsf.2022.139186
- Investigation of Stereometric and Fractal Patterns of Spin‐Coated LuMnO3 Thin Films, Advances in Materials Science and Engineering, Volume 2021 (2021) no. 1 | DOI:10.1155/2021/9912247
- Prospects for application of ferroelectric manganites with controlled vortex density, Applied Physics Letters, Volume 118 (2021) no. 14 | DOI:10.1063/5.0032988
- Switchable photovoltaic response in hexagonal LuMnO3 single crystals, Applied Physics Letters, Volume 118 (2021) no. 23 | DOI:10.1063/5.0053379
- Eu–Mn Charge Transfer and the Strong Charge–Spin–Electronic Coupling Behavior in EuMnO3, Inorganic Chemistry, Volume 60 (2021) no. 3, p. 1367 | DOI:10.1021/acs.inorgchem.0c02498
- Bulk photovoltaic effect in hexagonal LuMnO3 single crystals, Physical Review B, Volume 104 (2021) no. 18 | DOI:10.1103/physrevb.104.184116
- Cumulative effects of fluctuations and magnetoelectric coupling in two-dimensional RMnO3 (R = Tb, Lu and Y) multiferroics, Physics Letters A, Volume 400 (2021), p. 127305 | DOI:10.1016/j.physleta.2021.127305
- Self-Assembled Hexagonal Lu1–xInxFeO3 Nanopillars Embedded in Orthorhombic Lu1–xInxFeO3 Nanoparticle Matrixes as Room-Temperature Multiferroic Thin Films for Memory Devices and Spintronic Applications, ACS Applied Nano Materials, Volume 3 (2020) no. 8, p. 7516 | DOI:10.1021/acsanm.0c01139
- Hexagonal rare-earth manganites and ferrites: a review of improper ferroelectricity, magnetoelectric coupling, and unusual domain walls, Physical Chemistry Chemical Physics, Volume 22 (2020) no. 26, p. 14415 | DOI:10.1039/d0cp02195d
- Strain-driven structure-ferroelectricity relationship in hexagonal TbMnO3 films, Physical Review B, Volume 102 (2020) no. 10 | DOI:10.1103/physrevb.102.104106
- Monte Carlo study of the manganite oxide perovskite YMnO3, Applied Physics A, Volume 125 (2019) no. 9 | DOI:10.1007/s00339-019-2880-6
- Electric field control of magnetism in Si3N4 gated Pt/Co/Pt heterostructures, Journal of Applied Physics, Volume 125 (2019) no. 11 | DOI:10.1063/1.5083148
- Strain engineering of magnetic and orbital order in perovskite LuMnO3 epitaxial films, Physical Review B, Volume 100 (2019) no. 17 | DOI:10.1103/physrevb.100.174417
- Magnetism tailored by mechanical strain engineering in PrVO3 thin films, Physical Review B, Volume 99 (2019) no. 22 | DOI:10.1103/physrevb.99.224405
- Magnetic properties of the warwickite MnMgBO4, Solid State Communications, Volume 290 (2019), p. 64 | DOI:10.1016/j.ssc.2018.12.019
- Dielectric relaxation in epitaxial films of paraelectric-magnetic SrTiO3-SrMnO3 solid solution, Applied Physics Letters, Volume 112 (2018) no. 5 | DOI:10.1063/1.5017667
- Effect of transition metal (TM) doping on structural and magnetic properties in hexagonal YMn0.917TM0.083O3 systems, Heliyon, Volume 4 (2018) no. 12, p. e00993 | DOI:10.1016/j.heliyon.2018.e00993
- Two types of B-site ordered structures of the double perovskite Y2CrMnO6: experimental identification and first-principles study, Inorganic Chemistry Frontiers, Volume 5 (2018) no. 1, p. 217 | DOI:10.1039/c7qi00686a
- Stabilization of E -type magnetic order caused by epitaxial strain in perovskite manganites, Physical Review B, Volume 97 (2018) no. 8 | DOI:10.1103/physrevb.97.085124
- Strain-driven magnetic phase transitions from an antiferromagnetic to a ferromagnetic state in perovskite RMnO3 films, Physical Review B, Volume 98 (2018) no. 19 | DOI:10.1103/physrevb.98.195133
- Spectroscopic Characterisation of Multiferroic Interfaces, Spectroscopy of Complex Oxide Interfaces, Volume 266 (2018), p. 245 | DOI:10.1007/978-3-319-74989-1_10
- Magnetization of manganite thin films on ferroelectric substrates, Journal of Magnetism and Magnetic Materials, Volume 440 (2017), p. 179 | DOI:10.1016/j.jmmm.2016.12.108
- Mn 3dbands and Y–O hybridization of hexagonal and orthorhombic YMnO3thin films, Journal of Physics: Condensed Matter, Volume 29 (2017) no. 29, p. 295501 | DOI:10.1088/1361-648x/aa75e3
- Single-axis-dependent structural and multiferroic properties of orthorhombic RMnO3(R=Gd–Lu), Physical Review B, Volume 95 (2017) no. 18 | DOI:10.1103/physrevb.95.184105
- Modulating Magnetic Properties by Tailoring In-Plane Domain Structures in Hexagonal YMnO3 Films, ACS Applied Materials Interfaces, Volume 8 (2016) no. 38, p. 25379 | DOI:10.1021/acsami.6b08024
- Non-collinear magnetism in multiferroic perovskites, Journal of Physics: Condensed Matter, Volume 28 (2016) no. 12, p. 123001 | DOI:10.1088/0953-8984/28/12/123001
- Ferroelectric InMnO3: Growth of single crystals, structure and high-temperature phase transitions, Journal of Solid State Chemistry, Volume 241 (2016), p. 54 | DOI:10.1016/j.jssc.2016.05.031
- Constructing a magnetic handle for antiferromagnetic manganites, Physical Review B, Volume 93 (2016) no. 14 | DOI:10.1103/physrevb.93.140413
- Multiferroic Materials: Physics and Properties, Reference Module in Materials Science and Materials Engineering (2016) | DOI:10.1016/b978-0-12-803581-8.09245-6
- Preparation of epitaxial hexagonal YMnO3 thin films and observation of ferroelectric vortex domains, npj Quantum Materials, Volume 1 (2016) no. 1 | DOI:10.1038/npjquantmats.2016.15
- Multiferroicity and Magnetoelectric Coupling in TbMnO3 Thin Films, ACS Applied Materials Interfaces, Volume 7 (2015) no. 48, p. 26603 | DOI:10.1021/acsami.5b08091
- Magnetoelectronics—electric field control of magnetism in the solid state, Journal of Physics: Condensed Matter, Volume 27 (2015) no. 50, p. 500301 | DOI:10.1088/0953-8984/27/50/500301
Cité par 45 documents. Sources : Crossref
Commentaires - Politique