Comptes Rendus
Optical frequency dissemination for metrology applications
[Dissémination de fréquences optiques pour applications métrologiques]
Comptes Rendus. Physique, Volume 16 (2015) no. 5, pp. 524-530.

Avec les progrès réalisés dans le développement de standards de fréquences optiques, les besoins en matière de dissémination de fréquences optiques stables augmentent. À ce jour, la fibre optique constitue le moyen le plus prometteur pour relier de grandes distances géographiques tout en maintenant une haute exigence en matière de stabilité et de précision en fréquence. Nous avons étudié le transfert d'une fréquence optique par différentes fibres au cours des dernières années et avons atteint une instabilité fractionnelle et une imprécision à un niveau inférieur à 1019 pour des fibres optiques couvrant une longueur de presque 2000 km. Nous donnons un aperçu de différentes techniques et méthodes qui peuvent être utilisées en combinaison avec des fibres optiques pour obtenir un transfert de fréquence stable. Les résultats obtenus pour différentes fibres optiques sont résumés et un aperçu des futurs développements du transfert par fibre est donné.

With the progress in the development of optical frequency standards grows the demand for the dissemination of stable optical frequencies. To date, optical fiber links constitute the most promising medium to bridge large geographical distances while still maintaining a high degree of frequency stability and accuracy. We investigated the transfer of an optical frequency along different fiber links during the past years and achieved a fractional instability and uncertainty at a level lower than 1019 using fiber links with lengths of up to almost 2000 km. We give an overview of different techniques and methods that can be used in combination with optical fiber links to achieve a stable frequency transfer. The results of different fiber links are summarized and an outlook of future links is given.

Publié le :
DOI : 10.1016/j.crhy.2015.03.011
Keywords: Optical fiber link, Frequency transfer, Optical atomic clock, Lasers
Mot clés : Fibre optique, Transfert de fréquence, Horloge atomique, Lasers
Stefan Droste 1 ; Thomas Udem 1 ; Ronald Holzwarth 1, 2 ; Theodor Wolfgang Hänsch 1, 3

1 Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany
2 Menlo Systems GmbH, Am Klopferspitz 19a, 82152 Martinsried, Germany
3 Ludwig-Maximilians Universität, Schellingstrasse 4, 80799 München, Germany
@article{CRPHYS_2015__16_5_524_0,
     author = {Stefan Droste and Thomas Udem and Ronald Holzwarth and Theodor Wolfgang H\"ansch},
     title = {Optical frequency dissemination for metrology applications},
     journal = {Comptes Rendus. Physique},
     pages = {524--530},
     publisher = {Elsevier},
     volume = {16},
     number = {5},
     year = {2015},
     doi = {10.1016/j.crhy.2015.03.011},
     language = {en},
}
TY  - JOUR
AU  - Stefan Droste
AU  - Thomas Udem
AU  - Ronald Holzwarth
AU  - Theodor Wolfgang Hänsch
TI  - Optical frequency dissemination for metrology applications
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 524
EP  - 530
VL  - 16
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.03.011
LA  - en
ID  - CRPHYS_2015__16_5_524_0
ER  - 
%0 Journal Article
%A Stefan Droste
%A Thomas Udem
%A Ronald Holzwarth
%A Theodor Wolfgang Hänsch
%T Optical frequency dissemination for metrology applications
%J Comptes Rendus. Physique
%D 2015
%P 524-530
%V 16
%N 5
%I Elsevier
%R 10.1016/j.crhy.2015.03.011
%G en
%F CRPHYS_2015__16_5_524_0
Stefan Droste; Thomas Udem; Ronald Holzwarth; Theodor Wolfgang Hänsch. Optical frequency dissemination for metrology applications. Comptes Rendus. Physique, Volume 16 (2015) no. 5, pp. 524-530. doi : 10.1016/j.crhy.2015.03.011. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.03.011/

[1] I. Ushijima; M. Takamoto; M. Das; T. Ohkubo; H. Katori Cryogenic optical lattice clocks, Nat. Photonics, Volume 9 (2015) no. 3, pp. 185-189 | DOI

[2] B.J. Bloom; T.L. Nicholson; J.R. Williams; S.L. Campbell; M. Bishof; X. Zhang; W. Zhang; S.L. Bromley; J. Ye An optical lattice clock with accuracy and stability at the 1018 level, Nature, Volume 506 (2014), pp. 71-75 | DOI

[3] N. Hinkley; J.A. Sherman; N.B. Phillips; M. Schioppo; N.D. Lemke; K. Beloy; M. Pizzocaro; C.W. Oates; A.D. Ludlow An atomic clock with 1018 instability, Science, Volume 341 (2013) no. 6151, pp. 1215-1218 http://www.sciencemag.org/content/341/6151/1215.abstract | DOI

[4] N. Huntemann; M. Okhapkin; B. Lipphardt; S. Weyers; C. Tamm; E. Peik High-accuracy optical clock based on the octupole transition in Yb+171, Phys. Rev. Lett., Volume 108 (2012), p. 090801 | DOI

[5] M. Gurov; J. McFerran; B. Nagorny; R. Tyumenev; Z. Xu; Y. Le Coq; R. Le Targat; P. Lemonde; J. Lodewyck; S. Bize Optical lattice clocks as candidates for a possible redefinition of the SI second, IEEE Trans. Instrum. Meas., Volume 62 (2013) no. 6, pp. 1568-1573 | DOI

[6] A.A. Madej; P. Dubé; Z. Zhou; J.E. Bernard; M. Gertsvolf Sr+88 445-THz single-ion reference at the 1017 level via control and cancellation of systematic uncertainties and its measurement against the SI second, Phys. Rev. Lett., Volume 109 (2012), p. 203002 | DOI

[7] C.W. Chou; D.B. Hume; T. Rosenband; D.J. Wineland Optical clocks and relativity, Science, Volume 329 (2010) no. 5999, pp. 1630-1633 http://www.sciencemag.org/content/329/5999/1630.abstract | DOI

[8] S.G. Karshenboim Fundamental physical constants: looking from different angles, Can. J. Phys., Volume 83 (2005) no. 8, pp. 767-811 | DOI

[9] W.-H. Tseng A survey of time transfer via a bidirectional fiber link for precise calibration services, NCSL Int. Meas. J. Meas. Sci., Volume 8 (2013), pp. 70-77

[10] A. Bauch Caesium atomic clocks: function, performance and applications, Meas. Sci. Technol., Volume 14 (2003) no. 8, p. 1159 http://stacks.iop.org/0957-0233/14/i=8/a=301

[11] C.G. Parthey; A. Matveev; J. Alnis; B. Bernhardt; A. Beyer; R. Holzwarth; A. Maistrou; R. Pohl; K. Predehl; T. Udem; T. Wilken; N. Kolachevsky; M. Abgrall; D. Rovera; C. Salomon; P. Laurent; T.W. Hänsch Improved measurement of the hydrogen 1S–2S transition frequency, Phys. Rev. Lett., Volume 107 (2011), p. 203001 | DOI

[12] A. Bauch; J. Achkar; S. Bize; D. Calonico; R. Dach; R. Hlavać; L. Lorini; T. Parker; G. Petit; D. Piester; K. Szymaniec; P. Uhrich Comparison between frequency standards in Europe and the USA at the 1015 uncertainty level, Metrologia, Volume 43 (2006) no. 1, p. 109 http://stacks.iop.org/0026-1394/43/i=1/a=016

[13] M. Fujieda; D. Piester; T. Gotoh; J. Becker; M. Aida; A. Bauch Carrier-phase two-way satellite frequency transfer over a very long baseline, Metrologia, Volume 51 (2014) no. 3, p. 253 http://stacks.iop.org/0026-1394/51/i=3/a=253

[14] K. Predehl; G. Grosche; S.M.F. Raupach; S. Droste; O. Terra; J. Alnis; T. Legero; T.W. Hänsch; T. Udem; R. Holzwarth; H. Schnatz A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place, Science, Volume 336 (2012) no. 6080, pp. 441-444 http://www.sciencemag.org/content/336/6080/441.abstract | DOI

[15] S. Droste; F. Ozimek; T. Udem; K. Predehl; T.W. Hänsch; H. Schnatz; G. Grosche; R. Holzwarth Optical-frequency transfer over a single-span 1840 km fiber link, Phys. Rev. Lett., Volume 111 (2013), p. 110801 | DOI

[16] A. Bercy; S. Guellati-Khelifa; F. Stefani; G. Santarelli; C. Chardonnet; P.-E. Pottie; O. Lopez; A. Amy-Klein In-line extraction of an ultrastable frequency signal over an optical fiber link, J. Opt. Soc. Am. B, Volume 31 (2014) no. 4, pp. 678-685 http://josab.osa.org/abstract.cfm?URI=josab-31-4-678 | DOI

[17] D. Calonico; E. Bertacco; C. Calosso; C. Clivati; G. Costanzo; M. Frittelli; A. Godone; A. Mura; N. Poli; D. Sutyrin; G. Tino; M. Zucco; F. Levi High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link, Appl. Phys. B, Volume 117 (2014) no. 3, pp. 979-986 | DOI

[18] O. Lopez; A. Amy-Klein; C. Daussy; C. Chardonnet; F. Narbonneau; M. Lours; G. Santarelli 86-km optical link with a resolution of 2×1018 for RF frequency transfer, Eur. Phys. J. D, Volume 48 (2008), pp. 35-41 | DOI

[19] G. Marra; H.S. Margolis; D.J. Richardson Dissemination of an optical frequency comb over fiber with 3×1018 fractional accuracy, Opt. Express, Volume 20 (2012) no. 2, pp. 1775-1782 http://www.opticsexpress.org/abstract.cfm?URI=oe-20-2-1775 | DOI

[20] F.R. Giorgetta; W.C. Swann; L.C. Sinclair; E. Baumann; I. Coddington; N.R. Newbury Optical two-way time and frequency transfer over free space, Nat. Photonics, Volume 7 (2013) no. 6, pp. 434-438 | DOI

[21] M. Xin; K. Şafak; M.Y. Peng; P.T. Callahan; F.X. Kärtner One-femtosecond, long-term stable remote laser synchronization over a 3.5-km fiber link, Opt. Express, Volume 22 (2014) no. 12, pp. 14904-14912 http://www.opticsexpress.org/abstract.cfm?URI=oe-22-12-14904 | DOI

[22] Y.Y. Jiang; A.D. Ludlow; N.D. Lemke; R.W. Fox; J.A. Sherman; L.-S. Ma; C.W. Oates Making optical atomic clocks more stable with 1016-level laser stabilization, Nat. Photonics, Volume 5 (2011) no. 3, pp. 158-161 | DOI

[23] T. Kessler; C. Hagemann; C. Grebing; T. Legero; U. Sterr; F. Riehle; M.J. Martin; L. Chen; J. Ye A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity, Nat. Photonics, Volume 6 (2012) no. 10, pp. 687-692 | DOI

[24] C.V. Raman; K.S. Krishnan A new type of secondary radiation, Nature, Volume 121 (1928), pp. 501-502

[25] C. Clivati; G. Bolognini; D. Calonico; S. Faralli; F. Levi; A. Mura; N. Poli Distributed Raman optical amplification in phase coherent transfer of optical frequencies, IEEE Photonics Technol. Lett., Volume 25 (2013) no. 17, pp. 1711-1714 | DOI

[26] E. Ippen; R. Stolen Stimulated Brillouin scattering in optical fibers, Appl. Phys. Lett., Volume 21 (1972) no. 11, pp. 539-541 http://scitation.aip.org/content/aip/journal/apl/21/11/10.1063/1.1654249 | DOI

[27] O. Terra; G. Grosche; H. Schnatz Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber, Opt. Express, Volume 18 (2010) no. 15, pp. 16102-16111 http://www.opticsexpress.org/abstract.cfm?URI=oe-18-15-16102 | DOI

[28] C.E. Calosso; E. Bertacco; D. Calonico; C. Clivati; G.A. Costanzo; M. Frittelli; F. Levi; A. Mura; A. Godone Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network, Opt. Lett., Volume 39 (2014) no. 5, pp. 1177-1180 http://ol.osa.org/abstract.cfm?URI=ol-39-5-1177 | DOI

[29] S.W. Schediwy; D. Gozzard; K.G.H. Baldwin; B.J. Orr; R.B. Warrington; G. Aben; A.N. Luiten High-precision optical-frequency dissemination on branching optical-fiber networks, Opt. Lett., Volume 38 (2013) no. 15, pp. 2893-2896 http://ol.osa.org/abstract.cfm?URI=ol-38-15-2893 | DOI

[30] G. Grosche Eavesdropping time and frequency: phase noise cancellation along a time-varying path, such as an optical fiber, Opt. Lett., Volume 39 (2014) no. 9, pp. 2545-2548 http://ol.osa.org/abstract.cfm?URI=ol-39-9-2545 | DOI

[31] O. Lopez; A. Haboucha; F. Kéfélian; H. Jiang; B. Chanteau; V. Roncin; C. Chardonnet; A. Amy-Klein; G. Santarelli Cascaded multiplexed optical link on a telecommunication network for frequency dissemination, Opt. Express, Volume 18 (2010) no. 16, pp. 16849-16857 http://www.opticsexpress.org/abstract.cfm?URI=oe-18-16-16849 | DOI

[32] S. Dawkins; J. McFerran; A. Luiten Considerations on the measurement of the stability of oscillators with frequency counters, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 54 (2007) no. 5, pp. 918-925 | DOI

[33] N.R. Newbury; P.A. Williams; W.C. Swann Coherent transfer of an optical carrier over 251 km, Opt. Lett., Volume 32 (2007) no. 21, pp. 3056-3058 http://ol.osa.org/abstract.cfm?URI=ol-32-21-3056 | DOI

[34] G. Grosche; O. Terra; K. Predehl; R. Holzwarth; B. Lipphardt; F. Vogt; U. Sterr; H. Schnatz Optical frequency transfer via 146 km fiber link with 1019 relative accuracy, Opt. Lett., Volume 34 (2009) no. 15, pp. 2270-2272 http://ol.osa.org/abstract.cfm?URI=ol-34-15-2270 | DOI

[35] NEAT-FT Accurate time/frequency comparison and dissemination through optical telecommunication networks https://www.ptb.de/emrp/neatft_home.html

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Frequency and time transfer for metrology and beyond using telecommunication network fibres

Olivier Lopez; Fabien Kéfélian; Haifeng Jiang; ...

C. R. Phys (2015)


Development of a strontium optical lattice clock for the SOC mission on the ISS

Kai Bongs; Yeshpal Singh; Lyndsie Smith; ...

C. R. Phys (2015)


Time and frequency comparisons using radiofrequency signals from satellites

Andreas Bauch

C. R. Phys (2015)