With the progress in the development of optical frequency standards grows the demand for the dissemination of stable optical frequencies. To date, optical fiber links constitute the most promising medium to bridge large geographical distances while still maintaining a high degree of frequency stability and accuracy. We investigated the transfer of an optical frequency along different fiber links during the past years and achieved a fractional instability and uncertainty at a level lower than using fiber links with lengths of up to almost 2000 km. We give an overview of different techniques and methods that can be used in combination with optical fiber links to achieve a stable frequency transfer. The results of different fiber links are summarized and an outlook of future links is given.
Avec les progrès réalisés dans le développement de standards de fréquences optiques, les besoins en matière de dissémination de fréquences optiques stables augmentent. À ce jour, la fibre optique constitue le moyen le plus prometteur pour relier de grandes distances géographiques tout en maintenant une haute exigence en matière de stabilité et de précision en fréquence. Nous avons étudié le transfert d'une fréquence optique par différentes fibres au cours des dernières années et avons atteint une instabilité fractionnelle et une imprécision à un niveau inférieur à pour des fibres optiques couvrant une longueur de presque 2000 km. Nous donnons un aperçu de différentes techniques et méthodes qui peuvent être utilisées en combinaison avec des fibres optiques pour obtenir un transfert de fréquence stable. Les résultats obtenus pour différentes fibres optiques sont résumés et un aperçu des futurs développements du transfert par fibre est donné.
Mots-clés : Fibre optique, Transfert de fréquence, Horloge atomique, Lasers
Stefan Droste 1; Thomas Udem 1; Ronald Holzwarth 1, 2; Theodor Wolfgang Hänsch 1, 3
@article{CRPHYS_2015__16_5_524_0, author = {Stefan Droste and Thomas Udem and Ronald Holzwarth and Theodor Wolfgang H\"ansch}, title = {Optical frequency dissemination for metrology applications}, journal = {Comptes Rendus. Physique}, pages = {524--530}, publisher = {Elsevier}, volume = {16}, number = {5}, year = {2015}, doi = {10.1016/j.crhy.2015.03.011}, language = {en}, }
TY - JOUR AU - Stefan Droste AU - Thomas Udem AU - Ronald Holzwarth AU - Theodor Wolfgang Hänsch TI - Optical frequency dissemination for metrology applications JO - Comptes Rendus. Physique PY - 2015 SP - 524 EP - 530 VL - 16 IS - 5 PB - Elsevier DO - 10.1016/j.crhy.2015.03.011 LA - en ID - CRPHYS_2015__16_5_524_0 ER -
Stefan Droste; Thomas Udem; Ronald Holzwarth; Theodor Wolfgang Hänsch. Optical frequency dissemination for metrology applications. Comptes Rendus. Physique, The measurement of time / La mesure du temps, Volume 16 (2015) no. 5, pp. 524-530. doi : 10.1016/j.crhy.2015.03.011. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.03.011/
[1] Cryogenic optical lattice clocks, Nat. Photonics, Volume 9 (2015) no. 3, pp. 185-189 | DOI
[2] An optical lattice clock with accuracy and stability at the level, Nature, Volume 506 (2014), pp. 71-75 | DOI
[3] An atomic clock with instability, Science, Volume 341 (2013) no. 6151, pp. 1215-1218 http://www.sciencemag.org/content/341/6151/1215.abstract | DOI
[4] High-accuracy optical clock based on the octupole transition in , Phys. Rev. Lett., Volume 108 (2012), p. 090801 | DOI
[5] Optical lattice clocks as candidates for a possible redefinition of the SI second, IEEE Trans. Instrum. Meas., Volume 62 (2013) no. 6, pp. 1568-1573 | DOI
[6] 445-THz single-ion reference at the level via control and cancellation of systematic uncertainties and its measurement against the SI second, Phys. Rev. Lett., Volume 109 (2012), p. 203002 | DOI
[7] Optical clocks and relativity, Science, Volume 329 (2010) no. 5999, pp. 1630-1633 http://www.sciencemag.org/content/329/5999/1630.abstract | DOI
[8] Fundamental physical constants: looking from different angles, Can. J. Phys., Volume 83 (2005) no. 8, pp. 767-811 | DOI
[9] A survey of time transfer via a bidirectional fiber link for precise calibration services, NCSL Int. Meas. J. Meas. Sci., Volume 8 (2013), pp. 70-77
[10] Caesium atomic clocks: function, performance and applications, Meas. Sci. Technol., Volume 14 (2003) no. 8, p. 1159 http://stacks.iop.org/0957-0233/14/i=8/a=301
[11] Improved measurement of the hydrogen 1S–2S transition frequency, Phys. Rev. Lett., Volume 107 (2011), p. 203001 | DOI
[12] Comparison between frequency standards in Europe and the USA at the uncertainty level, Metrologia, Volume 43 (2006) no. 1, p. 109 http://stacks.iop.org/0026-1394/43/i=1/a=016
[13] Carrier-phase two-way satellite frequency transfer over a very long baseline, Metrologia, Volume 51 (2014) no. 3, p. 253 http://stacks.iop.org/0026-1394/51/i=3/a=253
[14] A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place, Science, Volume 336 (2012) no. 6080, pp. 441-444 http://www.sciencemag.org/content/336/6080/441.abstract | DOI
[15] Optical-frequency transfer over a single-span 1840 km fiber link, Phys. Rev. Lett., Volume 111 (2013), p. 110801 | DOI
[16] In-line extraction of an ultrastable frequency signal over an optical fiber link, J. Opt. Soc. Am. B, Volume 31 (2014) no. 4, pp. 678-685 http://josab.osa.org/abstract.cfm?URI=josab-31-4-678 | DOI
[17] High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link, Appl. Phys. B, Volume 117 (2014) no. 3, pp. 979-986 | DOI
[18] 86-km optical link with a resolution of for RF frequency transfer, Eur. Phys. J. D, Volume 48 (2008), pp. 35-41 | DOI
[19] Dissemination of an optical frequency comb over fiber with fractional accuracy, Opt. Express, Volume 20 (2012) no. 2, pp. 1775-1782 http://www.opticsexpress.org/abstract.cfm?URI=oe-20-2-1775 | DOI
[20] Optical two-way time and frequency transfer over free space, Nat. Photonics, Volume 7 (2013) no. 6, pp. 434-438 | DOI
[21] One-femtosecond, long-term stable remote laser synchronization over a 3.5-km fiber link, Opt. Express, Volume 22 (2014) no. 12, pp. 14904-14912 http://www.opticsexpress.org/abstract.cfm?URI=oe-22-12-14904 | DOI
[22] Making optical atomic clocks more stable with -level laser stabilization, Nat. Photonics, Volume 5 (2011) no. 3, pp. 158-161 | DOI
[23] A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity, Nat. Photonics, Volume 6 (2012) no. 10, pp. 687-692 | DOI
[24] A new type of secondary radiation, Nature, Volume 121 (1928), pp. 501-502
[25] Distributed Raman optical amplification in phase coherent transfer of optical frequencies, IEEE Photonics Technol. Lett., Volume 25 (2013) no. 17, pp. 1711-1714 | DOI
[26] Stimulated Brillouin scattering in optical fibers, Appl. Phys. Lett., Volume 21 (1972) no. 11, pp. 539-541 http://scitation.aip.org/content/aip/journal/apl/21/11/10.1063/1.1654249 | DOI
[27] Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber, Opt. Express, Volume 18 (2010) no. 15, pp. 16102-16111 http://www.opticsexpress.org/abstract.cfm?URI=oe-18-15-16102 | DOI
[28] Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network, Opt. Lett., Volume 39 (2014) no. 5, pp. 1177-1180 http://ol.osa.org/abstract.cfm?URI=ol-39-5-1177 | DOI
[29] High-precision optical-frequency dissemination on branching optical-fiber networks, Opt. Lett., Volume 38 (2013) no. 15, pp. 2893-2896 http://ol.osa.org/abstract.cfm?URI=ol-38-15-2893 | DOI
[30] Eavesdropping time and frequency: phase noise cancellation along a time-varying path, such as an optical fiber, Opt. Lett., Volume 39 (2014) no. 9, pp. 2545-2548 http://ol.osa.org/abstract.cfm?URI=ol-39-9-2545 | DOI
[31] Cascaded multiplexed optical link on a telecommunication network for frequency dissemination, Opt. Express, Volume 18 (2010) no. 16, pp. 16849-16857 http://www.opticsexpress.org/abstract.cfm?URI=oe-18-16-16849 | DOI
[32] Considerations on the measurement of the stability of oscillators with frequency counters, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 54 (2007) no. 5, pp. 918-925 | DOI
[33] Coherent transfer of an optical carrier over 251 km, Opt. Lett., Volume 32 (2007) no. 21, pp. 3056-3058 http://ol.osa.org/abstract.cfm?URI=ol-32-21-3056 | DOI
[34] Optical frequency transfer via 146 km fiber link with relative accuracy, Opt. Lett., Volume 34 (2009) no. 15, pp. 2270-2272 http://ol.osa.org/abstract.cfm?URI=ol-34-15-2270 | DOI
[35] Accurate time/frequency comparison and dissemination through optical telecommunication networks https://www.ptb.de/emrp/neatft_home.html
Cited by Sources:
Comments - Policy