The distribution and the comparison of an ultra-stable optical frequency and accurate time using optical fibres have been greatly improved in the last ten years. The frequency stability and accuracy of optical links surpass well-established methods using the global navigation satellite system and geostationary satellites. In this paper, we present a review of the methods and the results obtained. We show that public telecommunication network carrying Internet data can be used to compare and distribute ultra-stable metrological signals over long distances. This novel technique paves the way for the deployment of a national and continental ultra-stable metrological optical network.
La distribution et la comparaison d'étalons de fréquence optique ultra-stables et d'échelle de temps ont été grandement améliorées depuis dix ans par l'emploi de fibres optiques. La stabilité de fréquence et l'exactitude des liens optiques fibrés surpassent les méthodes bien établies fondées sur les communications satellitaires. Dans cet article, nous présentons les méthodes et les résultats obtenus pendant cette décade. Nous montrons que les réseaux de télécommunication publics transportant des données Internet peuvent être utilisés pour comparer et distribuer des signaux métrologiques sur de grandes distances. Ceci ouvre la voie au déploiement d'un réseau métrologique à l'échelle nationale et continentale.
Mots-clés : Métrologie du temps et des fréquences, Liens optiques, Lasers stabilisés en fréquence, Fibres optiques
Olivier Lopez 1; Fabien Kéfélian 1; Haifeng Jiang 2; Adil Haboucha 2; Anthony Bercy 1, 2; Fabio Stefani 1, 2; Bruno Chanteau 1; Amale Kanj 2; Daniele Rovera 2; Joseph Achkar 2; Christian Chardonnet 1; Paul-Eric Pottie 2; Anne Amy-Klein 1; Giorgio Santarelli 3
@article{CRPHYS_2015__16_5_531_0, author = {Olivier Lopez and Fabien K\'ef\'elian and Haifeng Jiang and Adil Haboucha and Anthony Bercy and Fabio Stefani and Bruno Chanteau and Amale Kanj and Daniele Rovera and Joseph Achkar and Christian Chardonnet and Paul-Eric Pottie and Anne Amy-Klein and Giorgio Santarelli}, title = {Frequency and time transfer for metrology and beyond using telecommunication network fibres}, journal = {Comptes Rendus. Physique}, pages = {531--539}, publisher = {Elsevier}, volume = {16}, number = {5}, year = {2015}, doi = {10.1016/j.crhy.2015.04.005}, language = {en}, }
TY - JOUR AU - Olivier Lopez AU - Fabien Kéfélian AU - Haifeng Jiang AU - Adil Haboucha AU - Anthony Bercy AU - Fabio Stefani AU - Bruno Chanteau AU - Amale Kanj AU - Daniele Rovera AU - Joseph Achkar AU - Christian Chardonnet AU - Paul-Eric Pottie AU - Anne Amy-Klein AU - Giorgio Santarelli TI - Frequency and time transfer for metrology and beyond using telecommunication network fibres JO - Comptes Rendus. Physique PY - 2015 SP - 531 EP - 539 VL - 16 IS - 5 PB - Elsevier DO - 10.1016/j.crhy.2015.04.005 LA - en ID - CRPHYS_2015__16_5_531_0 ER -
%0 Journal Article %A Olivier Lopez %A Fabien Kéfélian %A Haifeng Jiang %A Adil Haboucha %A Anthony Bercy %A Fabio Stefani %A Bruno Chanteau %A Amale Kanj %A Daniele Rovera %A Joseph Achkar %A Christian Chardonnet %A Paul-Eric Pottie %A Anne Amy-Klein %A Giorgio Santarelli %T Frequency and time transfer for metrology and beyond using telecommunication network fibres %J Comptes Rendus. Physique %D 2015 %P 531-539 %V 16 %N 5 %I Elsevier %R 10.1016/j.crhy.2015.04.005 %G en %F CRPHYS_2015__16_5_531_0
Olivier Lopez; Fabien Kéfélian; Haifeng Jiang; Adil Haboucha; Anthony Bercy; Fabio Stefani; Bruno Chanteau; Amale Kanj; Daniele Rovera; Joseph Achkar; Christian Chardonnet; Paul-Eric Pottie; Anne Amy-Klein; Giorgio Santarelli. Frequency and time transfer for metrology and beyond using telecommunication network fibres. Comptes Rendus. Physique, The measurement of time / La mesure du temps, Volume 16 (2015) no. 5, pp. 531-539. doi : 10.1016/j.crhy.2015.04.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.04.005/
[1] IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 59 (2012), pp. 391-410
[2] Metrologia, 49 (2012), p. 82
[3] Metrologia, 48 (2011), p. 283
[4] Phys. Rev. Lett., 108 (2012), p. 090801
[5] Nature, 506 (2014), pp. 71-75
[6] Science, 341 (2013), pp. 1215-1218
[7] Science, 329 (2010), pp. 1630-1633
[8] Nat. Photonics, 9 (2015), pp. 185-189
[9] Phys. Rev. Lett., 109 (2012), p. 080801
[10] Space Sci. Rev., 148 (2009), pp. 233-247
[11] Can. J. Phys., 83 (2005), pp. 767-811
[12] Phys. Rev. Lett., 113 (2014), p. 210802
[13] Phys. Rev. Lett., 113 (2014), p. 210801
[14] Metrologia, 43 (2006), p. 109
[15] Phys. Rev. Lett., 94 (2005), p. 203904
[16] Appl. Phys. B, Lasers Opt., 98 (2010), p. 723
[17] Opt. Lett., 34 (2009), pp. 2949-2951
[18] IEEE Trans. Instrum. Meas., 61 (2012), pp. 2844-2851
[19] Opt. Express, 21 (2013), pp. 18754-18764
[20] Opt. Lett., 39 (2014), pp. 2849-2852
[21] Transmission of an optical carrier frequency over a telecommunication fiber link, Baltimore, 2007 (2007)
[22] Opt. Lett., 32 (2007), p. 3056
[23] J. Opt. Soc. Am. B, 25 (2008), pp. 2029-2035
[24] Opt. Lett., 34 (2009), p. 2270
[25] Opt. Express, 18 (2010), p. 16849
[26] Opt. Lett., 34 (2009), p. 692
[27] Science, 336 (2012), pp. 441-444
[28] Opt. Express, 20 (2012), pp. 23518-23526
[29] Opt. Express, 19 (2011), pp. 16498-16507
[30] Opt. Express, 20 (2012), pp. 1775-1782
[31] Appl. Phys. B, Lasers Opt., 117 (2014), pp. 979-986
[32] Phys. Rev. Lett., 111 (2013), p. 110801
[33] Opt. Express, 18 (2010), pp. 21477-21483
[34] Phys. Rev. Lett., 110 (2013), p. 230801
[35] New J. Phys., 15 (2013), p. 073003
[36] Appl. Phys. Express, 4 (2011), p. 082203
[37] Science, 319 (2008), pp. 1805-1808
[38] Opt. Lett., 19 (1994), pp. 1777-1779
[39] Rev. Sci. Instrum., 78 (2007), p. 021101
[40] J. Opt. Soc. Am. B, 25 (2008), p. 1284
[41] Opt. Express, 18 (2010), p. 16102
[42] Opt. Express, 22 (2014), pp. 26537-26547
[43] IEEE Photonics Technol. Lett., 25 (2013), pp. 1711-1714
[44] J. Opt. Soc. Am. B, 32 (2015), pp. 787-797
[45] Proceedings EFTF 2014, 2014
[46] Opt. Express, 16 (2008), pp. 16459-16466
[47] IEEE Trans. Instrum. Meas., 58 (2009), pp. 1223-1228
[48] New J. Phys., 13 (2011), p. 125010
[49] Opt. Lett., 34 (2009), p. 1573
[50] Rev. Sci. Instrum., 76 (2005), p. 054703
[51] IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 54 (2007), pp. 918-925
[52] Metrologia, 50 (2013), p. 133
[53] Proc. of 43rd Annual Frequency Control Symposium, 1989, pp. 174-178
[54] Time transfer through optical fibers (TTTOF): first results of calibrated clock comparisons, Santa Ana Pueblo, New Mexico (2009)
[55] Metrologia, 49 (2012), p. 772
[56] Appl. Phys. B, Lasers Opt., 110 (2013), pp. 3-6
[57] Opt. Lett., 39 (2014), pp. 1177-1180
[58] J. Opt. Soc. Am. B, Opt. Phys., 31 (2014), pp. 678-685
[59] Opt. Lett., 39 (2014), pp. 2545-2548
[60] IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 60 (2013), pp. 1804-1810
[61] Opt. Lett., 38 (2013), pp. 2893-2896
[62] Proceedings EFTF2014, 2014
[63] Proceeding of EFTF 2014, 2014, pp. 231-234
[64] Opt. Express, 21 (2013), pp. 32643-32654
[65] IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 61 (2014), pp. 920-929
[66] Performance results of the first White Rabbit installation for CNGS time transfer, ISPCS (2012), pp. 1-6
[67] J. Phys. Conf. Ser., 327 (2011), p. 012049
[68] Phys. Rev. A, 87 (2013), p. 033823
[69] Opt. Lett., 38 (2013), pp. 1092-1094
[70] Phys. Rev. Lett., 107 (2011), p. 173904
[71] Bull. Géod., 59 (1985), pp. 207-220
[72] Mol. Phys., 111 (2013), pp. 2363-2373
Cited by Sources:
Comments - Policy