Comptes Rendus
Towards a redefinition of the second based on optical atomic clocks
[Vers une redéfinition de la seconde basée sur les horloges atomiques optiques]
Comptes Rendus. Physique, Volume 16 (2015) no. 5, pp. 506-515.

L'amélioration rapide en termes de précision et de stabilité des horloges atomiques optiques par rapport à l'horloge atomique au césium, qui constitue la référence primaire pour le temps et la fréquence, appelle une future redéfinition de la seconde dans le système international d'unités (SI). L'état d'avancement des horloges optiques basées sur des ions uniques dans des pièges radiofréquence ou sur des atomes neutres confinés dans le réseau optique est décrit, en insistant particulièrement sur le travail en cours à la Physikalisch-Technische Bundesanstalt (PTB, Brunswick, Allemagne). À côté du développement et de la mise en œuvre de différentes horloges optiques avec des incertitudes fractionnelles estimées d'un ordre de grandeur de 1018, les travaux sous-jacents sur les lasers ultra-stables comme éléments centraux ainsi que les moyens de comparer les horloges optiques lointaines avec des étalons transportables, des fibres optiques ou des rapports de fréquence sont exposés. Finalement, les conditions, les méthodes et les prochaines étapes sont discutées, qui sont des prérequis à une redéfinition de la seconde.

The rapid increase in accuracy and stability of optical atomic clocks compared to the caesium atomic clock as the primary standard of time and frequency asks for a future redefinition of the second in the International System of Units (SI). The status of the optical clocks based on either single ions in radio-frequency traps or on neutral atoms stored in an optical lattice is described, with special emphasis on the current work at the Physikalisch-Technische Bundesanstalt (PTB, Braunschweig, Germany). Besides the development and operation of different optical clocks with estimated fractional uncertainties in the 1018 range, the supporting work on ultra-stable lasers as core elements and the means to compare remote optical clocks with transportable standards, optical fibres, or frequency ratios is reported. Finally, the conditions, methods and next steps are discussed, which are the prerequisites for a future redefinition of the second.

Publié le :
DOI : 10.1016/j.crhy.2015.03.012
Keywords: Optical atomic clocks, Frequency standards, Future redefinition of the second, Frequency and time dissemination
Mot clés : Horloges optiques atomiques, Étalons de fréquence, Redéfinition future de la seconde, Diffusion des fréquences et des signaux horaires
Fritz Riehle 1

1 Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
@article{CRPHYS_2015__16_5_506_0,
     author = {Fritz Riehle},
     title = {Towards a redefinition of the second based on optical atomic clocks},
     journal = {Comptes Rendus. Physique},
     pages = {506--515},
     publisher = {Elsevier},
     volume = {16},
     number = {5},
     year = {2015},
     doi = {10.1016/j.crhy.2015.03.012},
     language = {en},
}
TY  - JOUR
AU  - Fritz Riehle
TI  - Towards a redefinition of the second based on optical atomic clocks
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 506
EP  - 515
VL  - 16
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.03.012
LA  - en
ID  - CRPHYS_2015__16_5_506_0
ER  - 
%0 Journal Article
%A Fritz Riehle
%T Towards a redefinition of the second based on optical atomic clocks
%J Comptes Rendus. Physique
%D 2015
%P 506-515
%V 16
%N 5
%I Elsevier
%R 10.1016/j.crhy.2015.03.012
%G en
%F CRPHYS_2015__16_5_506_0
Fritz Riehle. Towards a redefinition of the second based on optical atomic clocks. Comptes Rendus. Physique, Volume 16 (2015) no. 5, pp. 506-515. doi : 10.1016/j.crhy.2015.03.012. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.03.012/

[1] http://www.bipm.org/en/publications/si-brochure/second.html

[2] N. Poli; C.W. Oates; P. Gill; G.M. Tino Optical atomic clocks, Riv. Nuovo Cimento, Volume 36 (2013) no. 12, pp. 555-624 | DOI

[3] A.D. Ludlow; M.M. Boyd; J. Ye; E. Peik; P.O. Schmidt Optical atomic clocks, 13 Jul 2014 Rev. Mod. Phys. (accepted) | arXiv

[4] P. Gill When should we change the definition of the second?, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci., Volume 369 (2011), pp. 4109-4130 | DOI

[5] P. Gill; F. Riehle On secondary representations of the second, Braunschweig (2006), pp. 282-288 www.eftf.org/proceedings/proceedingsEFTF2006.pdf (ISBN: 978-1-4673-2642-1)

[6] http://www.bipm.org/en/committees/cipm/publications-cipm.html#pv

[7] http://www.bipm.org/en/publications/mises-en-pratique/standard-frequencies.html

[8] N. Herschbach; K. Pyka; J. Keller; T.E. Mehlstäubler Linear Paul trap design for an optical clock with Coulomb crystals, Appl. Phys. B, Volume 107 (2012), pp. 891-906 | DOI

[9] C.W. Chou; D.B. Hume; J.C.J. Koelemeij; D.J. Wineland; T. Rosenband Frequency comparison of two high-accuracy Al+ optical clocks, Phys. Rev. Lett., Volume 104 (2010), p. 070802 | DOI

[10] M.S. Safronova; M.G. Kozlov; C.W. Clark Precision calculation of blackbody radiation shifts for optical frequency metrology, Phys. Rev. Lett., Volume 107 (2011), p. 143006 | DOI

[11] Wolfgang Paul – Nobel lecture: Electromagnetic traps for charged and neutral particles. Nobelprize.org. Nobel Media AB 2014. Web. 1 Dec 2014. www.nobelprize.org/nobel_prizes/physics/laureates/1989/paul-lecture.html.

[12] C.A. Schrama; E. Peik; W.W. Smith; H. Walther Novel miniature ion traps, Opt. Commun., Volume 101 (1993), pp. 32-36 | DOI

[13] M.G. Raizen; J.M. Gilligan; J.C. Bergquist; W.M. Itano; D.J. Wineland Ionic crystals in a linear Paul trap, Phys. Rev. A, Volume 45 (1992), pp. 6493-6501 | DOI

[14] K. Matsubara; K. Hayasaka; Y. Li; H. Ito; S. Nagano; M. Kajita; M. Hosokawa Frequency measurement of the optical clock transition of 40Ca+ ions with an uncertainty of 1014 level, Appl. Phys. Express, Volume 1 (2008), p. 067011 | DOI

[15] M. Chwalla; J. Benhelm; K. Kim; G. Kirchmair; T. Monz; M. Riebe; P. Schindler; A.S. Villar; W. Hänsel; C.F. Roos; R. Blatt; M. Abgrall; G. Santarelli; G.D. Rovera; P. Laurent Absolute frequency measurement of the 40Ca+ 4s 2S1/2–3d 2D5/2 clock transition, Phys. Rev. Lett., Volume 102 (2009), p. 023002 | DOI

[16] Y. Huang; J. Cao; P. Liu; K. Liang; B. Ou; H. Guan; X. Huang; T. Li; K. Gao Hertz-level measurement of the 40Ca+ 4s 2S1/2–3d 2D5/2 clock transition frequency with respect to the SI second through the Global Positioning System, Phys. Rev. A, Volume 85 (2012), p. 030503(R) | DOI

[17] H.S. Margolis; G.P. Barwood; G. Huang; H.A. Klein; S.N. Lea; K. Szymaniec; P. Gill Hertz-level measurement of the optical clock frequency in a single 88Sr+ ion, Science, Volume 306 (2004), pp. 1355-1358 | DOI

[18] A.A. Madej; P. Dubé; Z. Zhu; J.E. Bernard; M. Gertsvolf 88Sr+ 445-THz single ion reference at the 1017 level via control and cancellation of systematic uncertainties and its measurement against the SI second, Phys. Rev. Lett., Volume 109 (2012), p. 203002 | DOI

[19] T. Rosenband; D.B. Hume; P.O. Schmidt; C.W. Chou; A. Brusch; L. Lorini; W.H. Oskay; R.E. Drullinger; T.M. Fortier; J.E. Stalnaker; S.A. Diddams; W.C. Swann; N.R. Newbury; W.M. Itano; D.J. Wineland; J.C. Bergquist Frequency ratio of Al+ and Hg+ single-ion optical clocks, metrology at the 17th decimal place, Science, Volume 319 (2008), pp. 1808-1812 | DOI

[20] R.M. Godun; P.B.R. Nisbet-Jones; J.M. Jones; S.A. King; L.A.M. Johnson; H.S. Margolis; K. Szymaniec; S.N. Lea; K. Bongs; P. Gill Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time-variation of fundamental constants, Phys. Rev. Lett., Volume 113 (2014), p. 210801 | DOI

[21] N. Huntemann; B. Lipphardt; C. Tamm; V. Gerginov; S. Weyers; E. Peik Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks, Phys. Rev. Lett., Volume 113 (2014), p. 210802 | DOI

[22] C. Tamm; N. Huntemann; B. Lipphardt; V. Gerginov; N. Nemitz; M. Kazda; S. Weyers; E. Peik A Cs-based optical frequency measurement using cross-linked optical and microwave oscillators, Phys. Rev. A, Volume 89 (2014), p. 023820 | DOI

[23] V.I. Yudin; A.V. Taichenachev; C.W. Oates; Z.W. Barber; N.D. Lemke; A.D. Ludlow; U. Sterr; C. Lisdat; F. Riehle Hyper-Ramsey spectroscopy of optical clock transitions, Phys. Rev. A, Volume 81 (2010), p. 011804(R) | DOI

[24] N. Huntemann; M. Okhapkin; B. Lipphardt; S. Weyers; C. Tamm; E. Peik High-accuracy optical clock based on the octupole transition in 171Yb+, Phys. Rev. Lett., Volume 108 (2012), p. 090801 | DOI

[25] J.B. Wübbena; S. Amairi; O. Mandel; P.O. Schmidt Sympathetic cooling of mixed-species two-ion crystals for precision spectroscopy, Phys. Rev. A, Volume 85 (2012), p. 043412 | DOI

[26] H. Katori; M. Takamoto; V.G. Pal'chikov; V.D. Ovsiannikov Ultrastable optical clock with neutral atoms in an engineered light shift trap, Phys. Rev. Lett., Volume 91 (2003) (173005–1–4) | DOI

[27] I. Ushijima; M. Takamoto; M. Das; T. Ohkubo; H. Katori Cryogenic optical lattice clocks, Nature Photon., Volume 9 (2015), pp. 185-189 | DOI

[28] B.J. Bloom; T.L. Nicholson; J.R. Williams; S.L. Campbell; M. Bishof; X. Zhang; W. Zhang; S.L. Bromley; J. Ye An optical lattice clock with accuracy and stability at the 1018 level, Nature, Volume 506 (2014), pp. 71-75 | DOI

[29] R. Le Targat; L. Lorini; Y. Le Coq; M. Zawada; J. Guéna; M. Abgrall; M. Gurov; P. Rosenbusch; D.G. Rovera; B. Nagórny; R. Gartman; P.G. Westergaard; M.E. Tobar; M. Lours; G. Santarelli; A. Clairon; S. Bize; P. Laurent; P. Lemonde; J. Lodewyck Experimental realisation of an optical second with strontium lattice clocks, Nat. Commun., Volume 4 (2013), p. 2109 | DOI

[30] S. Falke; N. Lemke; C. Grebing; B. Lipphardt; S. Weyers; V. Gerginov; N. Huntemann; C. Hagemann; A. Al-Masoudi; S. Häfner; S. Vogt; U. Sterr; C. Lisdat A strontium lattice clock with 3×1017 inaccuracy and its frequency, New J. Phys., Volume 16 (2014), p. 073023 | DOI

[31] D. Akamatsu; H. Inaba; K. Hosaka; M. Yasuda; A. Onae; T. Suzuyama; M. Amemiya; F.-L. Hong Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb, Appl. Phys. Express, Volume 7 (2014), p. 012401 | DOI

[32] A. Yamaguchi; M. Fujieda; M. Kumagai; H. Hachisu; S. Nagano; Y. Li; T. Ido; T. Takano; M. Takamoto; H. Katori Direct comparison of distant optical lattice clocks at the 1016 uncertainty, Appl. Phys. Express, Volume 4 (2011) no. 8, p. 082203 | DOI

[33] S. Falke; H. Schnatz; J.S.R. Vellore Winfred; T. Middelmann; S. Vogt; S. Weyers; B. Lipphardt; G. Grosche; F. Riehle; U. Sterr; C. Lisdat The 87Sr optical frequency standard at PTB, Metrologia, Volume 48 (2011), pp. 399-407 | DOI

[34] T. Middelmann; S. Falke; C. Lisdat; U. Sterr High accuracy correction of blackbody radiation shift in an optical lattice clock, Phys. Rev. Lett., Volume 109 (2012), p. 263004 | DOI

[35] M.M. Boyd; A.D. Ludlow; S. Blatt; S.M. Foreman; T. Ido; T. Zelevinsky; J. Ye 87Sr lattice clock with inaccuracy below 1015, Phys. Rev. Lett., Volume 98 (2007), p. 083002 | DOI

[36] X. Baillard; M. Fouché; R.L. Targat; P.G. Westergaard; A. Lecallier; F. Chapelet; M. Abgrall; G.D. Rovera; P. Laurent; P. Rosenbusch; S. Bize; G. Santarelli; A. Clairon; P. Lemonde; G. Grosche; B. Lipphardt; H. Schnatz An optical lattice clock with spin-polarized 87Sr atoms, Eur. Phys. J. D, Volume 48 (2008), pp. 11-17 | DOI

[37] G.K. Campbell; A.D. Ludlow; S. Blatt; J.W. Thomsen; M.J. Martin; M.H.G. de Miranda; T. Zelevinsky; M.M. Boyd; J. Ye; S.A. Diddams; T.P. Heavner; T.E. Parker; S.R. Jefferts The absolute frequency of the 87Sr optical clock transition, Metrologia, Volume 45 (2008), pp. 539-548 | DOI

[38] F.-L. Hong; M. Musha; M. Takamoto; H. Inaba; S. Yanagimachi; A. Takamizawa; K. Watabe; T. Ikegami; M. Imae; Y. Fujii; M. Amemiya; K. Nakagawa; K. Ueda; H. Katori Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer, Opt. Lett., Volume 34 (2009), pp. 692-694 | DOI

[39] A. Yamaguchi; N. Shiga; S. Nagano; Y. Li; H. Ishijima; H. Hachisu; M. Kumagai; T. Ido Stability transfer between two clock lasers operating at different wavelengths for absolute frequency measurement of clock transition in 87Sr, Appl. Phys. Express, Volume 5 (2012), p. 022701 | DOI

[40] K. Matsubara; H. Hachisu; Y. Li; S. Nagano; C. Locke; A. Nohgami; M. Kajita; K. Hayasaka; T. Ido; M. Hosokawa Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement, Opt. Express, Volume 20 (2012), p. 022034 | DOI

[41] http://www.bipm.org/en/publications/mises-en-pratique/standard-frequencies.html

[42] K. Predehl; G. Grosche; S.M.F. Raupach; S. Droste; O. Terra; J. Alnis; T. Legero; T.W. Hänsch; T. Udem; R. Holzwarth; H. Schnatz A 920-kilometer optical fibre link for frequency metrology at the 19th decimal place, Science, Volume 336 (2012) no. 6080, pp. 441-444 | DOI

[43] N. Poli, M. Schioppo, S. Vogt, S. Falke, U. Sterr, C. Lisdat, G.M. Tino, A transportable strontium optical lattice clock, Appl. Phys. B online, . | DOI

[44] K. Bongs et al. Development of a strontium optical lattice clock for the SOC mission on the ISS, C. R. Physique, Volume 16 (2015) ( this issue ) | DOI

[45] S. Vogt, to be published (2015).

[46] R.W.P. Drever; J.L. Hall; F.V. Kowalski; J. Hough; G.M. Ford; A.J. Munley; H. Ward Laser phase and frequency stabilisation using an optical resonator, Appl. Phys. B, Volume 31 (1983), pp. 97-105 | DOI

[47] Q.-F. Chen; A. Troshyn; I. Ernsting; S. Kayser; S. Vasilyev; A. Nevsky; S. Schiller Spectrally narrow, long-term stable optical frequency reference based on a Eu3+:Y2SiO5 crystal at cryogenic temperature, Phys. Rev. Lett., Volume 107 (2011), p. 223202 | DOI

[48] D.R. Leibrandt; M.J. Thorpe; C.-W. Chou; T.M. Fortier; S.A. Diddams; T. Rosenband Absolute and relative stability of an optical frequency reference based on spectral hole burning in Eu3+:Y2SiO5, Phys. Rev. Lett., Volume 111 (2013), p. 237402 | DOI

[49] M.J. Thorpe; D.R. Leibrandt; T. Rosenband Shifts of optical frequency references based on spectral-hole burning in Eu3+:Y2SiO5, New J. Phys., Volume 15 (2013), p. 033006 | DOI

[50] D. Meiser; J. Ye; D.R. Carlson; M.J. Holland Prospects for a millihertz-linewidth laser, Phys. Rev. Lett., Volume 102 (2009), p. 163601 | DOI

[51] T. Kessler; C. Hagemann; C. Grebing; T. Legero; U. Sterr; F. Riehle; M.J. Martin; L. Chen; J. Ye A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity, Nature Photon., Volume 6 (2012), pp. 687-692 | DOI

[52] J. Millo; D.V. Magalhães; C. Mandache; Y. Le Coq; E.M.L. English; P.G. Westergaard; J. Lodewyck; S. Bize; P. Lemonde; G. Santarelli Ultrastable lasers based on vibration insensitive cavities, Phys. Rev. A, Volume 79 (2009), p. 053829 | DOI

[53] C. Hagemann; C. Grebing; T. Kessler; S. Falke; N. Lemke; C. Lisdat; H. Schnatz; F. Riehle; U. Sterr Providing 1016 short-term stability of a 1.5 μm laser to optical clocks, IEEE Trans. Instrum. Meas., Volume 62 (2013) no. 6, pp. 1556-1562 | DOI

[54] S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, U. Sterr, 8×1017 fractional laser frequency instability with a long room-temperature cavity, Opt. Lett. (submitted).

[55] A. Bauch Time and frequency comparisons using radiofrequency signals from satellites, C. R. Physique, Volume 16 (2015) ( this issue ) | DOI

[56] H. Hachisu; M. Fujieda; S. Nagano; T. Gotoh; A. Nogami; T. Ido; S. Falke; N. Huntemann; C. Grebing; B. Lipphardt; C. Lisdat; D. Piester Direct comparison of optical lattice clocks with an intercontinental baseline of 9000 km, Opt. Lett., Volume 39 (2014), pp. 4072-4075 | DOI

[57] L. Cacciapuoti; C. Salomon Atomic clock ensemble in space, J. Phys. Conf. Ser., Volume 327 (2011) no. 1, p. 012049 | DOI

[58] E. Samain; P. Vrancken; P. Guillemot; P. Fridelance; P. Exertier Time transfer by laser link (T2L2): characterization and calibration of the flight instrument, Metrologia, Volume 51 (2014), pp. 503-515

[59] N. Hinkley; J.A. Sherman; N.B. Phillips; M. Schioppo; N.D. Lemke; K. Beloy; M. Pizzocaro; C.W. Oates; A.D. Ludlow An atomic clock with 1018 instability, Science, Volume 341 (2013), pp. 1215-1218 | DOI

[60] C.W. Chou; D.B. Hume; T. Rosenband; D.J. Wineland Optical clocks and relativity, Science, Volume 329 (2010), pp. 1630-1633 | DOI

[61] A. Bjerhammar On a relativistic geodesy, Bull. Géod., Volume 59 (1985), pp. 207-220 | DOI

[62] http://www.bipm.org/en/measurement-units/new-si/

[63] P. Wolf; G. Petit; E. Peik; C. Tamm; H. Schnatz; B. Lipphardt; S. Weyers; R. Wynands; J.-Y. Richard; S. Bize; F. Chapelet; F. Pereira dos Santos; A. Clairon Comparing high accuracy frequency standards via TAI, Braunschweig (2006), pp. 476-485 www.eftf.org/proceedings/proceedingsEFTF2006.pdf (ISBN: 978-1-4673-2642-1)

[64] E. Peik; M. Okhapkin Nuclear clocks based on resonant excitation of γ-transitions, C. R. Physique, Volume 16 (2015) ( this issue ) | DOI

[65] E. Peik; C. Tamm Nuclear laser spectroscopy of the 3.5 eV transition in Th-229, Europhys. Lett., Volume 61 (2003), pp. 181-186 | DOI

[66] S.G. Porsev; V.V. Flambaum; E. Peik; C. Tamm Excitation of the isomeric 229mTh nuclear state via an electronic bridge process in 229Th+, Phys. Rev. Lett., Volume 105 (2010), p. 182501 (4 p.) | DOI

[67] http://www.euramet.org/fileadmin/docs/Publications/roadmaps/TC_TF_Roadmaps_2012_chart.pdf

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications

Masao Takamoto; Ichiro Ushijima; Manoj Das; ...

C. R. Phys (2015)


Atomic fountains and optical clocks at SYRTE: Status and perspectives

Michel Abgrall; Baptiste Chupin; Luigi De Sarlo; ...

C. R. Phys (2015)


Advances in atomic fountains

S. Bize; P. Laurent; M. Abgrall; ...

C. R. Phys (2004)