[Progrès en fontaines atomiques.]
Cet article décrit le travail réalisé au BNM-SYRTE (Observatoire de Paris) ces dernières années, en vue de l'amélioration et de l'utilisation d'étalons de fréquence micro-onde fondés sur l'utilisation d'atomes refroidis par laser. Nous décrivons tout d'abord les améliorations récentes des fontaines atomiques à 133Cs et 87Rb. Une avancée importante est l'obtention d'une stabilité relative de fréquence de
This article describes the work performed at BNM-SYRTE (Observatoire de Paris) in the past few years, toward the improvement and the use of microwave frequency standards using laser-cooled atoms. First, recent improvements of the 133Cs and 87Rb atomic fountains are described. An important advance is the achievement of a fractional frequency instability of
Mots-clés : Fontaines atomiques, Étalons de fréquence micro-onde, Atomes refroidis par laser, Horloges atomiques, PHARAO
S. Bize 1 ; P. Laurent 1 ; M. Abgrall 1 ; H. Marion 1 ; I. Maksimovic 1 ; L. Cacciapuoti 1 ; J. Grünert 1 ; C. Vian 1 ; F. Pereira dos Santos 1 ; P. Rosenbusch 1 ; P. Lemonde 1 ; G. Santarelli 1 ; P. Wolf 1 ; A. Clairon 1 ; A. Luiten 2 ; M. Tobar 2 ; C. Salomon 3
@article{CRPHYS_2004__5_8_829_0, author = {S. Bize and P. Laurent and M. Abgrall and H. Marion and I. Maksimovic and L. Cacciapuoti and J. Gr\"unert and C. Vian and F. Pereira dos Santos and P. Rosenbusch and P. Lemonde and G. Santarelli and P. Wolf and A. Clairon and A. Luiten and M. Tobar and C. Salomon}, title = {Advances in atomic fountains}, journal = {Comptes Rendus. Physique}, pages = {829--843}, publisher = {Elsevier}, volume = {5}, number = {8}, year = {2004}, doi = {10.1016/j.crhy.2004.09.003}, language = {en}, }
TY - JOUR AU - S. Bize AU - P. Laurent AU - M. Abgrall AU - H. Marion AU - I. Maksimovic AU - L. Cacciapuoti AU - J. Grünert AU - C. Vian AU - F. Pereira dos Santos AU - P. Rosenbusch AU - P. Lemonde AU - G. Santarelli AU - P. Wolf AU - A. Clairon AU - A. Luiten AU - M. Tobar AU - C. Salomon TI - Advances in atomic fountains JO - Comptes Rendus. Physique PY - 2004 SP - 829 EP - 843 VL - 5 IS - 8 PB - Elsevier DO - 10.1016/j.crhy.2004.09.003 LA - en ID - CRPHYS_2004__5_8_829_0 ER -
%0 Journal Article %A S. Bize %A P. Laurent %A M. Abgrall %A H. Marion %A I. Maksimovic %A L. Cacciapuoti %A J. Grünert %A C. Vian %A F. Pereira dos Santos %A P. Rosenbusch %A P. Lemonde %A G. Santarelli %A P. Wolf %A A. Clairon %A A. Luiten %A M. Tobar %A C. Salomon %T Advances in atomic fountains %J Comptes Rendus. Physique %D 2004 %P 829-843 %V 5 %N 8 %I Elsevier %R 10.1016/j.crhy.2004.09.003 %G en %F CRPHYS_2004__5_8_829_0
S. Bize; P. Laurent; M. Abgrall; H. Marion; I. Maksimovic; L. Cacciapuoti; J. Grünert; C. Vian; F. Pereira dos Santos; P. Rosenbusch; P. Lemonde; G. Santarelli; P. Wolf; A. Clairon; A. Luiten; M. Tobar; C. Salomon. Advances in atomic fountains. Comptes Rendus. Physique, Fundamental metrology, Volume 5 (2004) no. 8, pp. 829-843. doi : 10.1016/j.crhy.2004.09.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.09.003/
[1] Proceedings of the 6th Symposium on Frequency Standards and Metrology (P. Gill, ed.), World Scientific, Singapore, 2001 (See for instance)
[2] et al. A cesium fountain frequency standard: recent results, IEEE T. Instrum. Meas., Volume 44 (1995), p. 128
[3] Atomic clocks and inertial sensors, Metrologia, Volume 39 (2002), p. 435
[4] et al. Cold collision frequency shifts in a 87Rb fountain, Phys. Rev. Lett., Volume 85 (2000), p. 3117
[5] Measurement and cancellation of the cold collision frequency shift in an 87Rb fountain clock, Phys. Rev. Lett., Volume 85 (2000), p. 1622
[6] et al. A cold atom clock in absence of gravity, Eur. Phys. J. D, Volume 3 (1998), p. 201
[7] Cryogenic sapphire oscillator with exceptionally high frequency stability, IEEE T. Instrum. Meas., Volume 50 (2001), p. 519
[8] C. Vian, et al., BNM-SYRTE fountains: recent results, IEEE T. Instrum. Meas. (2004), submitted for publication
[9] A laser cooled Cs frequency standard and a measurement of the frequency shift due to ultra-cold collisions, Phys. Rev. Lett., Volume 70 (1993), p. 1771
[10] An experimental study of the spin-exchange frequency shift in a laser cooled cesium fountain standard, Europhys. Lett., Volume 36 (1996), p. 25
[11] et al. Controlling the cold collision shift in high precision atomic interferometry, Phys. Rev. Lett., Volume 89 (2002), p. 233004
[12] et al. Cavity frequency pulling in cold atom fountains, IEEE T. Instrum. Meas., Volume 50 (2001), p. 503
[13] et al. First observation of feshbach resonances at very low magnetic field in a 133Cs fountain, Proc. of the 2004 EFTF, 2004 | arXiv
[14] Design and realization of the microwave cavity in the PTB caesium atomic fountain clock CSF1, IEEE T. Ultrason. Ferroelect. Freq. Contr., Volume 49 (2002), p. 383
[15] et al. First comparison of remote cesium fountains, Proc. of the 2001 IEEE Intl. Freq. Cont. Symp., 2001, p. 63
[16] et al. Comparison of remote cesium fountains using GPS P3 and TWSTFT links, Proc. of the 2004 EFTF, 2004
[17] The Oklo bound on the time variation of the fine-structure constant revisited, Nucl. Phys. B, Volume 480 (1996), p. 37
[18] Time-variability of the fine-structure constant expected from the Oklo constraint and the QSO absorption lines, Phys. Lett. B, Volume 573 (2003), p. 39
[19] et al. Further evidence for cosmological evolution of the fine structure constant, Phys. Rev. Lett., Volume 87 (2001), p. 091301
[20] Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars, Phys. Rev. Lett., Volume 92 (2004), p. 121302
[21] Time variation of the fundamental “constants” and Kaluza–Klein theories, Phys. Rev. Lett., Volume 52 (1984), p. 489
[22] The string dilaton and a least coupling principle, Nucl. Phys. B, Volume 423 (1994), p. 532
[23] Runaway dilaton and equivalence principle violations, Phys. Rev. Lett., Volume 89 (2002), p. 081601
[24] et al. Search for variations of fundamental constants using atomic fountain clocks, Phys. Rev. Lett., Volume 90 (2003), p. 150801
[25] Atomic clocks and variations of the fine structure constant, Phys. Rev. Lett., Volume 74 (1995), p. 3511
[26] et al. Laser-cooled mercury ion frequency standard, Phys. Rev. Lett., Volume 80 (1998), p. 2089
[27] et al. Measurement of the hydrogen 1S–2S transition frequency by phase coherent comparison with a microwave cesium fountain clock, Phys. Rev. Lett., Volume 84 (2000), p. 5496
[28] et al. Optical frequency standard based on cold Ca atoms, IEEE T. Instrum. Meas., Volume 52 (2003), p. 250
[29] et al. Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock, Phys. Rev. Lett., Volume 90 (2003), p. 150802
[30] et al. Absolute frequency measurement of the 435.5 nm 171Yb+ clock transition with a Kerr-lens mode-locked femtosecond laser, Opt. Lett., Volume 26 (2001), p. 1589
[31] et al. Proc. of the Joint Mtg. IEEE Intl. Freq. Cont. Symp. and EFTF Conf., 2003
[32] arXiv
, 2003 |[33] Limits on the temporal variation of the fine structure constant, quark masses and strong interaction from quasar absorption spectra and atomic clock experiments, Phys. Rev. D, Volume 69 (2004), p. 115006
[34] Calculations of the relativistic effects in many-electron atoms and space–time variation of fundamental constants, Phys. Rev. A, Volume 59 (1999), p. 230
[35] Space–time variation of physical constants and relativistic corrections in atoms, Phys. Rev. Lett., Volume 82 (1999), p. 888
[36] Atomic optical clocks and search for variation of the fine-structure constant, Phys. Rev. A, Volume 61 (2000), p. 034502
[37] Some possibilities for laboratory searches for variations of fundamental constants, Can. J. Phys., Volume 78 (2000), p. 639
[38] Relativistic effects in Sr, Dy, YbII and YbIII and search for variation of the fine structure constant, Phys. Rev. A, Volume 68 (2003), p. 022506
[39] Relativistic effects in two valence-electron atoms and ions and the search for variation of the fine-structure constant, Phys. Rev. A, Volume 70 (2004), p. 014102
[40] et al. High-accuracy measurement of the 87Rb ground-tate hyperfine splitting in an atomic fountain, Europhys. Lett., Volume 45 (1999), p. 558
[41] et al. Proc. of the 6th Symposium on Frequency Standards and Metrology (P. Gill, ed.), World Scientific, Singapore, 2001, p. 53
[42] The cosmological evolution of the nucleon mass and the electroweak coupling constants, Eur. Phys. J. C, Volume 24 (2002), p. 639
[43] Implications of gauge unification for time variation of the fine structure constant, Phys. Lett. B, Volume 528 (2002), p. 121
[44] et al. New limits on the drift of fundamental constants from laboratory measurements, Phys. Rev. Lett., Volume 92 (2004), p. 230802
[45] et al. Absolute frequency measurements of Hg+ and Ca optical clock transitions with a femtosecond laser, Phys. Rev. Lett., Volume 86 (2001), p. 4996
[46] et al. New limit on the present temporal variation of the fine structure constant, 2004 | arXiv
[47] et al. Cesium fountains and micro-gravity clocks, Proc. of the 25th Moriond Conf. on Dark Matter in Cosmology, Clocks and Tests of Fundamental Laws, 1995
[48] J. Opt. Soc. Am. B, 6 (1989), p. 2020 See for instance (special issue)
[49] ACES: Atomic Clock Ensemble in Space, Proc. of the 1st ESA symposium on Space Station Utilization, SP385, 1996, p. 295
[50] Automatic system to control the operation of an extended cavity diode laser, Rev. Sci. Instrum., Volume 75 (2004), p. 54
[51] et al. Cold atoms in space and atomic clocks: ACES, C. R. Acad. Sci. Paris, Ser. IV, Volume 2 (2001), p. 1313
[52] et al. Tests of relativistic gravitation with a space-borne hydrogen maser, Phys. Rev. Lett., Volume 45 (1980), p. 2081
[53] HYPER: Hyper-precision cold atom interferometry in space, ESA-SCI (2000) 10
[54] et al. Proc. of the 2004 EFTF conf., 2004
[55] Proc. of the 2003 IFCS-EFTF conf., 2003 (See for instance)
[56] Visible lasers with subhertz linewidths, Phys. Rev. Lett., Volume 82 (1999), p. 3799
[57] Optical frequency metrology, Nature, Volume 416 (2002), p. 233
[58] Spectroscopy of strontium atoms in the Lamb–Dicke confinement (P. Gill, ed.), Proc. of the 6th Symposium on Frequency Standards and Metrology, World Scientific, Singapore, 2001, p. 323
[59] Ultrastable optical clock with neutral atoms in an engineered ligth shift trap, Phys. Rev. Lett., Volume 91 (2003), p. 173005
[60] Spectroscopy of the 1S0–3P0 clock transition of 87Sr in an optical lattice, Phys. Rev. Lett., Volume 91 (2003), p. 223001
[61] et al. Phase-coherent frequency measurement of the Ca intercombination line at 657 nm with a Kerr-lens mode-locked femtosecond laser, Phys. Rev. A, Volume 63 (2001), p. 021802
[62] et al. Clock transition for a future optical frequency standard with trapped atoms, Phys. Rev. A, Volume 68 (2003), p. 030501
[63] Magneto-optical trapping of Yb atoms using an intercombination transition, Phys. Rev. A, Volume 60 (1999), p. R745
[64] Efficient magneto-optical trapping of Yb atoms with a violet laser diode, Phys. Rev. A, Volume 68 (2003), p. 055401
[65] Possibility of an optical clock using the 6 1S0–6 3P0 transition in 171,173Yb atoms held in an optical lattice, Phys. Rev. A, Volume 69 (2004), p. 021403
- Cold Atom Gravimeter Based on an Atomic Fountain and a Microwave Transition, JETP Letters, Volume 119 (2024) no. 2, p. 84 | DOI:10.1134/s002136402360372x
- Atomnyy gravimetr na osnove atomnogo fontana i mikrovolnovogo perekhoda, Pisʹma v žurnal êksperimentalʹnoj i teoretičeskoj fiziki, Volume 119 (2024) no. 1-2, p. 89 | DOI:10.31857/s1234567824020034
- Optical lattice clocks and related platforms, Quantum Photonics (2024), p. 449 | DOI:10.1016/b978-0-323-98378-5.00002-7
- Toward a New Generation of Compact Transportable Yb+ Optical Clocks, Symmetry, Volume 14 (2022) no. 10, p. 2213 | DOI:10.3390/sym14102213
- Optimization of Operation Parameters in a Cesium Atomic Fountain Clock Using Monte Carlo Method, IEEE Access, Volume 9 (2021), p. 132140 | DOI:10.1109/access.2021.3113161
- Realization of the SI Second: Thermal Beam Cs Clock, Laser Cooling, and the Cs Fountain Clock, The New International System of Units (SI) (2019), p. 23 | DOI:10.1002/9783527814480.ch3
- Atomic clocks for geodesy, Reports on Progress in Physics, Volume 81 (2018) no. 6, p. 064401 | DOI:10.1088/1361-6633/aab409
- Deuteron charge radius and Rydberg constant from spectroscopy data in atomic deuterium, Metrologia, Volume 54 (2017) no. 2, p. L1 | DOI:10.1088/1681-7575/aa4e59
- Transportable Optical Lattice Clock with7×10−17Uncertainty, Physical Review Letters, Volume 118 (2017) no. 7 | DOI:10.1103/physrevlett.118.073601
- , Volume 1740 (2016), p. 090005 | DOI:10.1063/1.4952692
- Deployment of precise and robust sensors on board ISS—for scientific experiments and for operation of the station, Analytical and Bioanalytical Chemistry, Volume 408 (2016) no. 24, p. 6517 | DOI:10.1007/s00216-016-9789-0
- Laser Cooling, Atomic Clocks, and the Second, Quantum Metrology: Foundation of Units and Measurements (2015), p. 23 | DOI:10.1002/9783527680887.ch3
- Optical atomic clocks, Reviews of Modern Physics, Volume 87 (2015) no. 2, p. 637 | DOI:10.1103/revmodphys.87.637
- Microwave Frequency Standards Using New Physics, The Quantum Physics of Atomic Frequency Standards (2015), p. 211 | DOI:10.1201/b18738-7
- Progress in atomic fountains at LNE-SYRTE, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Volume 59 (2012) no. 3, p. 391 | DOI:10.1109/tuffc.2012.2208
- , 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings (2011), p. 1 | DOI:10.1109/fcs.2011.5977847
- , 2011 XXXth URSI General Assembly and Scientific Symposium (2011), p. 1 | DOI:10.1109/ursigass.2011.6050321
- HORACE: A compact cold atom clock for Galileo, Advances in Space Research, Volume 47 (2011) no. 5, p. 854 | DOI:10.1016/j.asr.2010.12.012
- Miniaturized optical system for atomic fountain clock, Chinese Physics B, Volume 20 (2011) no. 6, p. 063201 | DOI:10.1088/1674-1056/20/6/063201
- Improvement on Temperature Measurement of Cold Atoms in a Rubidium Fountain, Chinese Physics Letters, Volume 28 (2011) no. 6, p. 063201 | DOI:10.1088/0256-307x/28/6/063201
- Making optical atomic clocks more stable with 10−16-level laser stabilization, Nature Photonics, Volume 5 (2011) no. 3, p. 158 | DOI:10.1038/nphoton.2010.313
- Collisionally induced atomic clock shifts and correlations, Physical Review A, Volume 84 (2011) no. 1 | DOI:10.1103/physreva.84.013822
- Improved Measurement of the Hydrogen1S–2STransition Frequency, Physical Review Letters, Volume 107 (2011) no. 20 | DOI:10.1103/physrevlett.107.203001
- Optical Lattice Clocks for Precision Frequency Metrology, The Review of Laser Engineering, Volume 39 (2011) no. 11, p. 825 | DOI:10.2184/lsj.39.825
- Demonstration of a dual alkali Rb/Cs fountain clock, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Volume 57 (2010) no. 3, p. 647 | DOI:10.1109/tuffc.2010.1461
- , 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time forum (2009), p. 764 | DOI:10.1109/freq.2009.5168288
- Switching atomic fountain clock microwave interrogation signal and high-resolution phase measurements, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Volume 56 (2009) no. 7, p. 1319 | DOI:10.1109/tuffc.2009.1188
- Optical lattice clocks, The European Physical Journal Special Topics, Volume 172 (2009) no. 1, p. 81 | DOI:10.1140/epjst/e2009-01043-5
- Atomic Clocks, Time in Quantum Mechanics II, Volume 789 (2009), p. 363 | DOI:10.1007/978-3-642-03174-8_13
- , 2008 IEEE International Frequency Control Symposium (2008), p. 366 | DOI:10.1109/freq.2008.4623021
- Cryogenic-Sapphire-Oscillator-Based Reference Signal at 1 GHz with 10-15 Level Instability, Japanese Journal of Applied Physics, Volume 47 (2008) no. 9R, p. 7390 | DOI:10.1143/jjap.47.7390
- An optical lattice clock with spin-polarized 87Sr atoms, The European Physical Journal D, Volume 48 (2008) no. 1, p. 11 | DOI:10.1140/epjd/e2007-00330-3
- , 2007 Conference on Lasers and Electro-Optics - Pacific Rim (2007), p. 1 | DOI:10.1109/cleopr.2007.4391551
- , 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum (2007), p. 1106 | DOI:10.1109/freq.2007.4319250
- , 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum (2007), p. 467 | DOI:10.1109/freq.2007.4319118
- , 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum (2007), p. 649 | DOI:10.1109/freq.2007.4319154
- Accuracy Evaluation of a
Optical Lattice Clock, IEEE Transactions on Instrumentation and Measurement, Volume 56 (2007) no. 2, p. 336 | DOI:10.1109/tim.2007.891137 - RUBIDIUM BOSE–EINSTEIN CONDENSATE UNDER MICROGRAVITY, International Journal of Modern Physics D, Volume 16 (2007) no. 12b, p. 2447 | DOI:10.1142/s0218271807011620
- ATOMIC CLOCK ENSEMBLE IN SPACE: AN UPDATE, International Journal of Modern Physics D, Volume 16 (2007) no. 12b, p. 2511 | DOI:10.1142/s0218271807011681
- , 2006 IEEE International Frequency Control Symposium and Exposition (2006), p. 149 | DOI:10.1109/freq.2006.275368
- , 2006 IEEE International Frequency Control Symposium and Exposition (2006), p. 281 | DOI:10.1109/freq.2006.275396
- , 2006 IEEE International Frequency Control Symposium and Exposition (2006), p. 457 | DOI:10.1109/freq.2006.275429
- , 2006 IEEE International Frequency Control Symposium and Exposition (2006), p. 759 | DOI:10.1109/freq.2006.275484
- Continuous beams of cold atoms for space applications, Applied Physics B, Volume 84 (2006) no. 4, p. 659 | DOI:10.1007/s00340-006-2398-4
- Bose–Einstein condensates in microgravity, Applied Physics B, Volume 84 (2006) no. 4, p. 663 | DOI:10.1007/s00340-006-2359-y
- Design of the cold atom PHARAO space clock and initial test results, Applied Physics B, Volume 84 (2006) no. 4, p. 683 | DOI:10.1007/s00340-006-2396-6
- Comparison between frequency standards in Europe and the USA at the 10−15uncertainty level, Metrologia, Volume 43 (2006) no. 1, p. 109 | DOI:10.1088/0026-1394/43/1/016
- Normal-mode splitting with large collective cooperativity, Physical Review A, Volume 74 (2006) no. 5 | DOI:10.1103/physreva.74.053821
- Natural nuclear reactor at Oklo and variation of fundamental constants: Computation of neutronics of a fresh core, Physical Review C, Volume 74 (2006) no. 6 | DOI:10.1103/physrevc.74.064610
- Accurate Optical Lattice Clock withSr87Atoms, Physical Review Letters, Volume 97 (2006) no. 13 | DOI:10.1103/physrevlett.97.130801
- High resolution frequency standard dissemination via optical fiber metropolitan network, Review of Scientific Instruments, Volume 77 (2006) no. 6 | DOI:10.1063/1.2205155
- , Digest of the LEOS Summer Topical Meetings, 2005. (2005), p. 83 | DOI:10.1109/leosst.2005.1528004
- Recent Research Activities on Atomic Time Frequency Standards, IEEJ Transactions on Fundamentals and Materials, Volume 125 (2005) no. 6, p. 491 | DOI:10.1541/ieejfms.125.491
- Relativistic theory for time comparisons: a review, Metrologia, Volume 42 (2005) no. 3, p. S138 | DOI:10.1088/0026-1394/42/3/s14
- Atomic fountain clocks, Metrologia, Volume 42 (2005) no. 3, p. S64 | DOI:10.1088/0026-1394/42/3/s08
- Base units of the SI, fundamental constants and modern quantum physics, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 363 (2005) no. 1834, p. 2177 | DOI:10.1098/rsta.2005.1635
- The metrology of time, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 363 (2005) no. 1834, p. 2289 | DOI:10.1098/rsta.2005.1633
- Optical lattice clock with atoms confined in a shallow trap, Physical Review A, Volume 72 (2005) no. 3 | DOI:10.1103/physreva.72.033409
- Sub-Hertz Optical Frequency Comparisons between Two TrappedYb+171Ions, Physical Review Letters, Volume 94 (2005) no. 23 | DOI:10.1103/physrevlett.94.230801
- , Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, 2005. (2005), p. 947 | DOI:10.1109/freq.2005.1574062
- , Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, 2005. (2005), p. 99 | DOI:10.1109/freq.2005.1573909
Cité par 61 documents. Sources : Crossref
Commentaires - Politique