[Progrès en fontaines atomiques.]
Cet article décrit le travail réalisé au BNM-SYRTE (Observatoire de Paris) ces dernières années, en vue de l'amélioration et de l'utilisation d'étalons de fréquence micro-onde fondés sur l'utilisation d'atomes refroidis par laser. Nous décrivons tout d'abord les améliorations récentes des fontaines atomiques à 133Cs et 87Rb. Une avancée importante est l'obtention d'une stabilité relative de fréquence de où τ est la durée de la mesure en secondes, grâce à l'utilisation routinière d'un oscillateur cryogénique à résonateur en saphir comme référence de fréquence locale ultra-stable. La deuxième avancée est une méthode puissante pour contrôler le déplacement de fréquence lié aux collisions froides. Ces deux progrès conduisent à une stabilité de fréquence de à 50 000 s, une première pour des étalons primaires. De plus, ces horloges réalisent la seconde du système international SI avec une exactitude de , une amélioration d'un ordre de grandeur par rapport aux dispositifs sans refroidissement laser. Les tests des lois fondamentales de la physique constituent une application importante des horloges atomiques ultra-précises. Dans une deuxième partie, nous décrivons la recherche d'une éventuelle variation des constantes fondamentales utilisant des fontaines à 133Cs et 87Rb. La troisième partie fait le point sur la réalisation d'une horloge spatiale à atomes froids PHARAO développée en collaboration avec le CNES. Cette horloge est l'un des instruments principaux de la mission spatiale ACES de l'ESA qui volera à bord de la station spatiale internationale en 2007-2008, en vue d'effectuer une nouvelle génération de tests de la Relativité.
This article describes the work performed at BNM-SYRTE (Observatoire de Paris) in the past few years, toward the improvement and the use of microwave frequency standards using laser-cooled atoms. First, recent improvements of the 133Cs and 87Rb atomic fountains are described. An important advance is the achievement of a fractional frequency instability of where τ is the measurement time in seconds, thanks to the routine use of a cryogenic sapphire oscillator as an ultra-stable local frequency reference. The second advance is a powerful method to control the frequency shift due to cold collisions. These two advances lead to a fractional frequency in stability of at 50 000 s between two independent primary standards. In addition, these clocks realize the SI second with an accuracy of , one order of magnitude below that of uncooled devices. Tests of fundamental physical laws constitute an important field of application for highly accurate atomic clocks. In a second part, we describe tests of possible variations of fundamental constants using 87Rb and 133Cs fountains. The third part is an update on the cold atom space clock PHARAO developed in collaboration with CNES. This clock is one of the main instruments of the ACES/ESA mission which will fly on board the International Space Station in 2007-2008, enabling a new generation of relativity tests.
Mot clés : Fontaines atomiques, Étalons de fréquence micro-onde, Atomes refroidis par laser, Horloges atomiques, PHARAO
S. Bize 1 ; P. Laurent 1 ; M. Abgrall 1 ; H. Marion 1 ; I. Maksimovic 1 ; L. Cacciapuoti 1 ; J. Grünert 1 ; C. Vian 1 ; F. Pereira dos Santos 1 ; P. Rosenbusch 1 ; P. Lemonde 1 ; G. Santarelli 1 ; P. Wolf 1 ; A. Clairon 1 ; A. Luiten 2 ; M. Tobar 2 ; C. Salomon 3
@article{CRPHYS_2004__5_8_829_0, author = {S. Bize and P. Laurent and M. Abgrall and H. Marion and I. Maksimovic and L. Cacciapuoti and J. Gr\"unert and C. Vian and F. Pereira dos Santos and P. Rosenbusch and P. Lemonde and G. Santarelli and P. Wolf and A. Clairon and A. Luiten and M. Tobar and C. Salomon}, title = {Advances in atomic fountains}, journal = {Comptes Rendus. Physique}, pages = {829--843}, publisher = {Elsevier}, volume = {5}, number = {8}, year = {2004}, doi = {10.1016/j.crhy.2004.09.003}, language = {en}, }
TY - JOUR AU - S. Bize AU - P. Laurent AU - M. Abgrall AU - H. Marion AU - I. Maksimovic AU - L. Cacciapuoti AU - J. Grünert AU - C. Vian AU - F. Pereira dos Santos AU - P. Rosenbusch AU - P. Lemonde AU - G. Santarelli AU - P. Wolf AU - A. Clairon AU - A. Luiten AU - M. Tobar AU - C. Salomon TI - Advances in atomic fountains JO - Comptes Rendus. Physique PY - 2004 SP - 829 EP - 843 VL - 5 IS - 8 PB - Elsevier DO - 10.1016/j.crhy.2004.09.003 LA - en ID - CRPHYS_2004__5_8_829_0 ER -
%0 Journal Article %A S. Bize %A P. Laurent %A M. Abgrall %A H. Marion %A I. Maksimovic %A L. Cacciapuoti %A J. Grünert %A C. Vian %A F. Pereira dos Santos %A P. Rosenbusch %A P. Lemonde %A G. Santarelli %A P. Wolf %A A. Clairon %A A. Luiten %A M. Tobar %A C. Salomon %T Advances in atomic fountains %J Comptes Rendus. Physique %D 2004 %P 829-843 %V 5 %N 8 %I Elsevier %R 10.1016/j.crhy.2004.09.003 %G en %F CRPHYS_2004__5_8_829_0
S. Bize; P. Laurent; M. Abgrall; H. Marion; I. Maksimovic; L. Cacciapuoti; J. Grünert; C. Vian; F. Pereira dos Santos; P. Rosenbusch; P. Lemonde; G. Santarelli; P. Wolf; A. Clairon; A. Luiten; M. Tobar; C. Salomon. Advances in atomic fountains. Comptes Rendus. Physique, Volume 5 (2004) no. 8, pp. 829-843. doi : 10.1016/j.crhy.2004.09.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.09.003/
[1] Proceedings of the 6th Symposium on Frequency Standards and Metrology (P. Gill, ed.), World Scientific, Singapore, 2001 (See for instance)
[2] et al. A cesium fountain frequency standard: recent results, IEEE T. Instrum. Meas., Volume 44 (1995), p. 128
[3] Atomic clocks and inertial sensors, Metrologia, Volume 39 (2002), p. 435
[4] et al. Cold collision frequency shifts in a 87Rb fountain, Phys. Rev. Lett., Volume 85 (2000), p. 3117
[5] Measurement and cancellation of the cold collision frequency shift in an 87Rb fountain clock, Phys. Rev. Lett., Volume 85 (2000), p. 1622
[6] et al. A cold atom clock in absence of gravity, Eur. Phys. J. D, Volume 3 (1998), p. 201
[7] Cryogenic sapphire oscillator with exceptionally high frequency stability, IEEE T. Instrum. Meas., Volume 50 (2001), p. 519
[8] C. Vian, et al., BNM-SYRTE fountains: recent results, IEEE T. Instrum. Meas. (2004), submitted for publication
[9] A laser cooled Cs frequency standard and a measurement of the frequency shift due to ultra-cold collisions, Phys. Rev. Lett., Volume 70 (1993), p. 1771
[10] An experimental study of the spin-exchange frequency shift in a laser cooled cesium fountain standard, Europhys. Lett., Volume 36 (1996), p. 25
[11] et al. Controlling the cold collision shift in high precision atomic interferometry, Phys. Rev. Lett., Volume 89 (2002), p. 233004
[12] et al. Cavity frequency pulling in cold atom fountains, IEEE T. Instrum. Meas., Volume 50 (2001), p. 503
[13] et al. First observation of feshbach resonances at very low magnetic field in a 133Cs fountain, Proc. of the 2004 EFTF, 2004 | arXiv
[14] Design and realization of the microwave cavity in the PTB caesium atomic fountain clock CSF1, IEEE T. Ultrason. Ferroelect. Freq. Contr., Volume 49 (2002), p. 383
[15] et al. First comparison of remote cesium fountains, Proc. of the 2001 IEEE Intl. Freq. Cont. Symp., 2001, p. 63
[16] et al. Comparison of remote cesium fountains using GPS P3 and TWSTFT links, Proc. of the 2004 EFTF, 2004
[17] The Oklo bound on the time variation of the fine-structure constant revisited, Nucl. Phys. B, Volume 480 (1996), p. 37
[18] Time-variability of the fine-structure constant expected from the Oklo constraint and the QSO absorption lines, Phys. Lett. B, Volume 573 (2003), p. 39
[19] et al. Further evidence for cosmological evolution of the fine structure constant, Phys. Rev. Lett., Volume 87 (2001), p. 091301
[20] Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars, Phys. Rev. Lett., Volume 92 (2004), p. 121302
[21] Time variation of the fundamental “constants” and Kaluza–Klein theories, Phys. Rev. Lett., Volume 52 (1984), p. 489
[22] The string dilaton and a least coupling principle, Nucl. Phys. B, Volume 423 (1994), p. 532
[23] Runaway dilaton and equivalence principle violations, Phys. Rev. Lett., Volume 89 (2002), p. 081601
[24] et al. Search for variations of fundamental constants using atomic fountain clocks, Phys. Rev. Lett., Volume 90 (2003), p. 150801
[25] Atomic clocks and variations of the fine structure constant, Phys. Rev. Lett., Volume 74 (1995), p. 3511
[26] et al. Laser-cooled mercury ion frequency standard, Phys. Rev. Lett., Volume 80 (1998), p. 2089
[27] et al. Measurement of the hydrogen 1S–2S transition frequency by phase coherent comparison with a microwave cesium fountain clock, Phys. Rev. Lett., Volume 84 (2000), p. 5496
[28] et al. Optical frequency standard based on cold Ca atoms, IEEE T. Instrum. Meas., Volume 52 (2003), p. 250
[29] et al. Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock, Phys. Rev. Lett., Volume 90 (2003), p. 150802
[30] et al. Absolute frequency measurement of the 435.5 nm 171Yb+ clock transition with a Kerr-lens mode-locked femtosecond laser, Opt. Lett., Volume 26 (2001), p. 1589
[31] et al. Proc. of the Joint Mtg. IEEE Intl. Freq. Cont. Symp. and EFTF Conf., 2003
[32] arXiv
, 2003 |[33] Limits on the temporal variation of the fine structure constant, quark masses and strong interaction from quasar absorption spectra and atomic clock experiments, Phys. Rev. D, Volume 69 (2004), p. 115006
[34] Calculations of the relativistic effects in many-electron atoms and space–time variation of fundamental constants, Phys. Rev. A, Volume 59 (1999), p. 230
[35] Space–time variation of physical constants and relativistic corrections in atoms, Phys. Rev. Lett., Volume 82 (1999), p. 888
[36] Atomic optical clocks and search for variation of the fine-structure constant, Phys. Rev. A, Volume 61 (2000), p. 034502
[37] Some possibilities for laboratory searches for variations of fundamental constants, Can. J. Phys., Volume 78 (2000), p. 639
[38] Relativistic effects in Sr, Dy, YbII and YbIII and search for variation of the fine structure constant, Phys. Rev. A, Volume 68 (2003), p. 022506
[39] Relativistic effects in two valence-electron atoms and ions and the search for variation of the fine-structure constant, Phys. Rev. A, Volume 70 (2004), p. 014102
[40] et al. High-accuracy measurement of the 87Rb ground-tate hyperfine splitting in an atomic fountain, Europhys. Lett., Volume 45 (1999), p. 558
[41] et al. Proc. of the 6th Symposium on Frequency Standards and Metrology (P. Gill, ed.), World Scientific, Singapore, 2001, p. 53
[42] The cosmological evolution of the nucleon mass and the electroweak coupling constants, Eur. Phys. J. C, Volume 24 (2002), p. 639
[43] Implications of gauge unification for time variation of the fine structure constant, Phys. Lett. B, Volume 528 (2002), p. 121
[44] et al. New limits on the drift of fundamental constants from laboratory measurements, Phys. Rev. Lett., Volume 92 (2004), p. 230802
[45] et al. Absolute frequency measurements of Hg+ and Ca optical clock transitions with a femtosecond laser, Phys. Rev. Lett., Volume 86 (2001), p. 4996
[46] et al. New limit on the present temporal variation of the fine structure constant, 2004 | arXiv
[47] et al. Cesium fountains and micro-gravity clocks, Proc. of the 25th Moriond Conf. on Dark Matter in Cosmology, Clocks and Tests of Fundamental Laws, 1995
[48] J. Opt. Soc. Am. B, 6 (1989), p. 2020 See for instance (special issue)
[49] ACES: Atomic Clock Ensemble in Space, Proc. of the 1st ESA symposium on Space Station Utilization, SP385, 1996, p. 295
[50] Automatic system to control the operation of an extended cavity diode laser, Rev. Sci. Instrum., Volume 75 (2004), p. 54
[51] et al. Cold atoms in space and atomic clocks: ACES, C. R. Acad. Sci. Paris, Ser. IV, Volume 2 (2001), p. 1313
[52] et al. Tests of relativistic gravitation with a space-borne hydrogen maser, Phys. Rev. Lett., Volume 45 (1980), p. 2081
[53] HYPER: Hyper-precision cold atom interferometry in space, ESA-SCI (2000) 10
[54] et al. Proc. of the 2004 EFTF conf., 2004
[55] Proc. of the 2003 IFCS-EFTF conf., 2003 (See for instance)
[56] Visible lasers with subhertz linewidths, Phys. Rev. Lett., Volume 82 (1999), p. 3799
[57] Optical frequency metrology, Nature, Volume 416 (2002), p. 233
[58] Spectroscopy of strontium atoms in the Lamb–Dicke confinement (P. Gill, ed.), Proc. of the 6th Symposium on Frequency Standards and Metrology, World Scientific, Singapore, 2001, p. 323
[59] Ultrastable optical clock with neutral atoms in an engineered ligth shift trap, Phys. Rev. Lett., Volume 91 (2003), p. 173005
[60] Spectroscopy of the 1S0–3P0 clock transition of 87Sr in an optical lattice, Phys. Rev. Lett., Volume 91 (2003), p. 223001
[61] et al. Phase-coherent frequency measurement of the Ca intercombination line at 657 nm with a Kerr-lens mode-locked femtosecond laser, Phys. Rev. A, Volume 63 (2001), p. 021802
[62] et al. Clock transition for a future optical frequency standard with trapped atoms, Phys. Rev. A, Volume 68 (2003), p. 030501
[63] Magneto-optical trapping of Yb atoms using an intercombination transition, Phys. Rev. A, Volume 60 (1999), p. R745
[64] Efficient magneto-optical trapping of Yb atoms with a violet laser diode, Phys. Rev. A, Volume 68 (2003), p. 055401
[65] Possibility of an optical clock using the 6 1S0–6 3P0 transition in 171,173Yb atoms held in an optical lattice, Phys. Rev. A, Volume 69 (2004), p. 021403
Cité par Sources :
Commentaires - Politique