Comptes Rendus
Some fundamental physics experiments using atomic clocks and sensors
[Quelques expériences de physique fondamentale faisant appel aux horloges et capteurs atomiques]
Comptes Rendus. Physique, Volume 16 (2015) no. 5, pp. 565-575.

Nous présentons plusieurs expériences en physique fondamentale qui utilisent les horloges et les capteurs atomiques en combinaison avec des méthodes de transfert en temps/fréquence de haute performance. Notre revue est loin d'être exhaustive et se concentre plutôt sur un sous-ensemble choisi d'expériences actuelles et futures, tout en fournissant un certain background théorique. Nous nous bornons à donner de brefs survols des expériences et des théories, mais fournissons d'amples références bibliographiques pour le lecteur intéressé par le sujet.

We present several experiments in fundamental physics that use atomic clocks and sensors together with high performance time/frequency transfer methods. Our account is far from being exhaustive and instead concentrates on a chosen subset of present and future experiments, whilst providing some theoretical background. We only give very brief overviews of the experiments and theories, but provide ample references for the interested reader.

Publié le :
DOI : 10.1016/j.crhy.2015.04.002
Keywords: Equivalence Principle, Lorentz invariance, Experimental tests of General Relativity, Time and frequency metrology
Mot clés : Principe d'Equivalence, Invariance de Lorentz, Tests expérimentaux de la Relativité Générale, Métrologie temps–fréquence
Christine Guerlin 1 ; Pacôme Delva 2 ; Peter Wolf 2

1 Laboratoire Kastler Brossel, ENS-PSL Research University, CNRS, UPMC-Sorbonne Universités, Collège de France
2 SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 61, avenue de l'Observatoire, 75014 Paris, France
@article{CRPHYS_2015__16_5_565_0,
     author = {Christine Guerlin and Pac\^ome Delva and Peter Wolf},
     title = {Some fundamental physics experiments using atomic clocks and sensors},
     journal = {Comptes Rendus. Physique},
     pages = {565--575},
     publisher = {Elsevier},
     volume = {16},
     number = {5},
     year = {2015},
     doi = {10.1016/j.crhy.2015.04.002},
     language = {en},
}
TY  - JOUR
AU  - Christine Guerlin
AU  - Pacôme Delva
AU  - Peter Wolf
TI  - Some fundamental physics experiments using atomic clocks and sensors
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 565
EP  - 575
VL  - 16
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.04.002
LA  - en
ID  - CRPHYS_2015__16_5_565_0
ER  - 
%0 Journal Article
%A Christine Guerlin
%A Pacôme Delva
%A Peter Wolf
%T Some fundamental physics experiments using atomic clocks and sensors
%J Comptes Rendus. Physique
%D 2015
%P 565-575
%V 16
%N 5
%I Elsevier
%R 10.1016/j.crhy.2015.04.002
%G en
%F CRPHYS_2015__16_5_565_0
Christine Guerlin; Pacôme Delva; Peter Wolf. Some fundamental physics experiments using atomic clocks and sensors. Comptes Rendus. Physique, Volume 16 (2015) no. 5, pp. 565-575. doi : 10.1016/j.crhy.2015.04.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.04.002/

[1] P. Ade; N. Aghanim; C. Armitage-Caplan; M. Arnaud; M. Ashdown; F. Atrio-Barandela; J. Aumont; C. Baccigalupi; A. Banday; R. Barreiro et al. Planck 2013 results, XVI: cosmological parameters | arXiv

[2] Space-time explorer and quantum equivalence space test, assessment study report of STE–QUEST http://sci.esa.int/ste-quest/53445-ste-quest-yellow-book/ (ESA/SRE 6)

[3] B. Altschul; Q.G. Bailey; L. Blanchet; K. Bongs; P. Bouyer; L. Cacciapuoti; S. Capozziello; N. Gaaloul; D. Giulini; J. Hartwig; L. Iess; P. Jetzer; A. Landragin; E. Rasel; S. Reynaud; S. Schiller; C. Schubert; F. Sorrentino; U. Sterr; J.D. Tasson; G.M. Tino; P. Tuckey; P. Wolf Quantum tests of the Einstein equivalence principle with the STE–QUEST space mission, Adv. Space Res., Volume 55 (2015) no. 1, pp. 501-524 | DOI

[4] P. Wolf; S. Bize; A. Clairon; A.N. Luiten; G. Santarelli; M.E. Tobar Tests of Lorentz invariance using a microwave resonator, Phys. Rev. Lett., Volume 90 (2003), p. 060402 | DOI

[5] P. Wolf; S. Bize; A. Clairon; G. Santarelli; M.E. Tobar; A.N. Luiten Improved test of Lorentz invariance in electrodynamics, Phys. Rev. D, Volume 70 (2004), p. 051902 | DOI

[6] P. Wolf; M. Tobar; S. Bize; A. Clairon; A. Luiten; G. Santarelli Whispering gallery resonators and tests of Lorentz invariance, Gen. Relativ. Gravit., Volume 36 (2004) no. 10, pp. 2351-2372 | DOI

[7] H. Müller; P.L. Stanwix; M.E. Tobar; E. Ivanov; P. Wolf; S. Herrmann; A. Senger; E. Kovalchuk; A. Peters Tests of relativity by complementary rotating Michelson–Morley experiments, Phys. Rev. Lett., Volume 99 (2007), p. 050401 | DOI

[8] M.E. Tobar; P. Wolf; S. Bize; G. Santarelli; V. Flambaum Testing local Lorentz and position invariance and variation of fundamental constants by searching the derivative of the comparison frequency between a cryogenic sapphire oscillator and hydrogen maser, Phys. Rev. D, Volume 81 (2010), p. 022003 | DOI

[9] M.E. Tobar; P.L. Stanwix; J.J. McFerran; J. Guéna; M. Abgrall; S. Bize; A. Clairon; P. Laurent; P. Rosenbusch; D. Rovera; G. Santarelli Testing local position and fundamental constant invariance due to periodic gravitational and boost using long-term comparison of the SYRTE atomic fountains and H-masers, Phys. Rev. D, Volume 87 (2013), p. 122004 | DOI

[10] C.M. Will Theory and Experiment in Gravitational Physics, Cambridge University Press, 1993

[11] C.M. Will The confrontation between general relativity and experiment, Living Rev. Relativ., Volume 17 (2014) no. 4 | DOI

[12] R.V. Pound; G.A. Rebka Apparent weight of photons, Phys. Rev. Lett., Volume 4 (1960), pp. 337-341 | DOI

[13] L. Schiff On experimental tests of the general theory of relativity, Am. J. Phys., Volume 28 (1960) no. 4, pp. 340-343

[14] K. Nordtvedt Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D, Volume 11 (1975), pp. 245-247 | DOI

[15] M.P. Haugan Energy conservation and the principle of equivalence, Ann. Phys., Volume 118 (1979) no. 1, pp. 156-186 | DOI

[16] P. Wolf; L. Blanchet; C.J. Bordé; S. Reynaud; C. Salomon; C. Cohen-Tannoudji Does an atom interferometer test the gravitational redshift at the Compton frequency?, Class. Quantum Gravity, Volume 28 (2011) no. 14, p. 145017 | DOI

[17] H.P. Robertson Postulate versus observation in the special theory of relativity, Rev. Mod. Phys., Volume 21 (1949), pp. 378-382 | DOI

[18] R. Mansouri; R.U. Sexl A test theory of special relativity, I: simultaneity and clock synchronization, Gen. Relativ. Gravit., Volume 8 (1977), pp. 497-513 | DOI

[19] R. Mansouri; R.U. Sexl A test theory of special relativity, II: first order tests, Gen. Relativ. Gravit., Volume 8 (1977), pp. 515-524 | DOI

[20] R. Mansouri; R.U. Sexl A test theory of special relativity, III: second-order tests, Gen. Relativ. Gravit., Volume 8 (1977), pp. 809-814 | DOI

[21] G. Abolghasem; M.R.H. Khajehpour; R. Mansouri How to test the special theory of relativity on the rotating earth, Phys. Lett. A, Volume 132 (1988), pp. 310-312 | DOI

[22] G.H. Abolghasem; M.R.H. Khajehpour; R. Mansouri Generalisation of the test theory of special relativity to non-inertial frames, J. Phys. A, Math. Gen., Volume 22 (1989), pp. 1589-1597 | DOI

[23] D. Colladay; V.A. Kostelecký CPT violation and the standard model, Phys. Rev. D, Volume 55 (1997), pp. 6760-6774 | DOI

[24] D. Colladay; V.A. Kostelecký Lorentz-violating extension of the standard model, Phys. Rev. D, Volume 58 (1998), p. 116002 | DOI

[25] V.A. Kostelecký; M. Mewes Signals for Lorentz violation in electrodynamics, Phys. Rev. D, Volume 66 (2002) no. 5, p. 056005 | arXiv | DOI

[26] V.A. Kostelecký Gravity, Lorentz violation, and the standard model, Phys. Rev. D, Volume 69 (2004), p. 105009 | DOI

[27] J.D. Tasson What do we know about Lorentz invariance?, Rep. Prog. Phys., Volume 77 (2014) no. 6, p. 062901 | DOI

[28] V.A. Kostelecký; N. Russell Data tables for Lorentz and CPT violation, Rev. Mod. Phys., Volume 83 (2011), pp. 11-31 | DOI

[29] P. Wolf; F. Chapelet; S. Bize; A. Clairon Cold atom clock test of Lorentz invariance in the matter sector, Phys. Rev. Lett., Volume 96 (2006), p. 060801 | DOI

[30] K.-Y. Chung; S.-w. Chiow; S. Herrmann; S. Chu; H. Müller Atom interferometry tests of local Lorentz invariance in gravity and electrodynamics, Phys. Rev. D, Volume 80 (2009), p. 016002 | DOI

[31] Q.G. Bailey; V.A. Kostelecký Signals for Lorentz violation in post-Newtonian gravity, Phys. Rev. D, Volume 74 (2006), p. 045001 | DOI

[32] V.A. Kostelecký; C.D. Lane Constraints on Lorentz violation from clock-comparison experiments, Phys. Rev. D, Volume 60 (1999), p. 116010 | DOI

[33] R. Bluhm; V.A. Kostelecký; C.D. Lane; N. Russell Clock-comparison tests of Lorentz and CPT symmetry in space, Phys. Rev. Lett., Volume 88 (2002), p. 090801 | DOI

[34] R. Bluhm; V.A. Kostelecký; C.D. Lane; N. Russell Probing Lorentz and CPT violation with space-based experiments, Phys. Rev. D, Volume 68 (2003), p. 125008 | DOI

[35] V.A. Kostelecky; C.D. Lane Nonrelativistic quantum Hamiltonian for Lorentz violation, J. Math. Phys., Volume 40 (1999) no. 12, pp. 6245-6253 | DOI

[36] C.D. Lane Probing Lorentz violation with Doppler-shift experiments, Phys. Rev. D, Volume 72 (2005), p. 016005 | DOI

[37] L. Cacciapuoti; C. Salomon ACES mission objectives and scientific requirements, 2010 (Tech. rep., ESA, ACE-ESA-TN-001, Issue 3, Rev 0)

[38] P.D.G. Petit; P. Wolf Atomic time, clocks, and clock comparisons in relativistic timespace: a review (S.M. Kopeikin, ed.), Frontiers in Relativistiv Celectial Mechanics, Volume 2: Applications and Experiments, De Gruyter, 2014

[39] R.F.C. Vessot; M.W. Levine A test of the equivalence principle using a space-borne clock, Gen. Relativ. Gravit., Volume 10 (1979), pp. 181-204 | DOI

[40] R.F.C. Vessot; M.W. Levine; E.M. Mattison; E.L. Blomberg; T.E. Hoffman; G.U. Nystrom; B.F. Farrel; R. Decher; P.B. Eby; C.R. Baugher Test of relativistic gravitation with a space-borne hydrogen maser, Phys. Rev. Lett., Volume 45 (1980), pp. 2081-2084 | DOI

[41] R.F.C. Vessot Clocks and spaceborne tests of relativistic gravitation, Adv. Space Res., Volume 9 (1989), pp. 21-28 | DOI

[42] J. Guéna; M. Abgrall; D. Rovera; P. Rosenbusch; M.E. Tobar; P. Laurent; A. Clairon; S. Bize Improved tests of local position invariance using Rb87 and Cs133 fountains, Phys. Rev. Lett., Volume 109 (2012) no. 8, p. 080801 | arXiv | DOI

[43] B. Botermann; D. Bing; C. Geppert; G. Gwinner; T.W. Hänsch; G. Huber; S. Karpuk; A. Krieger; T. Kühl; W. Nörtershäuser; C. Novotny; S. Reinhardt; R. Sánchez; D. Schwalm; T. Stöhlker; A. Wolf; G. Saathoff Test of time dilation using stored Li+ ions as clocks at relativistic speed, Phys. Rev. Lett., Volume 113 (2014) no. 12, p. 120405 | arXiv | DOI

[44] S. Fray; C.A. Diez; T.W. Hänsch; M. Weitz Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle, Phys. Rev. Lett., Volume 93 (2004), p. 240404 | DOI

[45] D. Schlippert; J. Hartwig; H. Albers; L.L. Richardson; C. Schubert; A. Roura; W.P. Schleich; W. Ertmer; E.M. Rasel Quantum test of the universality of free fall, Phys. Rev. Lett., Volume 112 (2014), p. 203002 | DOI

[46] M.G. Tarallo; T. Mazzoni; N. Poli; D.V. Sutyrin; X. Zhang; G.M. Tino Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects, Phys. Rev. Lett., Volume 113 (2014), p. 023005 | DOI

[47] B. Hoffmann Noon–midnight red shift, Phys. Rev., Volume 121 (1961), pp. 337-342 | DOI

[48] J.C. Lopresto; C. Schrader; A.K. Pierce Solar gravitational redshift from the infrared oxygen triplet, Astrophys. J., Volume 376 (1991), pp. 757-760 | DOI

[49] T.P. Krisher; D.D. Morabito; J.D. Anderson The Galileo solar redshift experiment, Phys. Rev. Lett., Volume 70 (1993), pp. 2213-2216 | DOI

[50] V.A. Kostelecký; J.D. Tasson Matter–gravity couplings and Lorentz violation, Phys. Rev. D, Volume 83 (2011), p. 016013 | DOI

[51] V.A. Kostelecký; J.D. Tasson Prospects for large relativity violations in matter–gravity couplings, Phys. Rev. Lett., Volume 102 (2009), p. 010402 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Advances in atomic fountains

S. Bize; P. Laurent; M. Abgrall; ...

C. R. Phys (2004)


The ACES/PHARAO space mission

Philippe Laurent; Didier Massonnet; Luigi Cacciapuoti; ...

C. R. Phys (2015)


Atomic fountains and optical clocks at SYRTE: Status and perspectives

Michel Abgrall; Baptiste Chupin; Luigi De Sarlo; ...

C. R. Phys (2015)