We present several experiments in fundamental physics that use atomic clocks and sensors together with high performance time/frequency transfer methods. Our account is far from being exhaustive and instead concentrates on a chosen subset of present and future experiments, whilst providing some theoretical background. We only give very brief overviews of the experiments and theories, but provide ample references for the interested reader.
Nous présentons plusieurs expériences en physique fondamentale qui utilisent les horloges et les capteurs atomiques en combinaison avec des méthodes de transfert en temps/fréquence de haute performance. Notre revue est loin d'être exhaustive et se concentre plutôt sur un sous-ensemble choisi d'expériences actuelles et futures, tout en fournissant un certain background théorique. Nous nous bornons à donner de brefs survols des expériences et des théories, mais fournissons d'amples références bibliographiques pour le lecteur intéressé par le sujet.
Mots-clés : Principe d'Equivalence, Invariance de Lorentz, Tests expérimentaux de la Relativité Générale, Métrologie temps–fréquence
Christine Guerlin 1; Pacôme Delva 2; Peter Wolf 2
@article{CRPHYS_2015__16_5_565_0, author = {Christine Guerlin and Pac\^ome Delva and Peter Wolf}, title = {Some fundamental physics experiments using atomic clocks and sensors}, journal = {Comptes Rendus. Physique}, pages = {565--575}, publisher = {Elsevier}, volume = {16}, number = {5}, year = {2015}, doi = {10.1016/j.crhy.2015.04.002}, language = {en}, }
TY - JOUR AU - Christine Guerlin AU - Pacôme Delva AU - Peter Wolf TI - Some fundamental physics experiments using atomic clocks and sensors JO - Comptes Rendus. Physique PY - 2015 SP - 565 EP - 575 VL - 16 IS - 5 PB - Elsevier DO - 10.1016/j.crhy.2015.04.002 LA - en ID - CRPHYS_2015__16_5_565_0 ER -
Christine Guerlin; Pacôme Delva; Peter Wolf. Some fundamental physics experiments using atomic clocks and sensors. Comptes Rendus. Physique, The measurement of time / La mesure du temps, Volume 16 (2015) no. 5, pp. 565-575. doi : 10.1016/j.crhy.2015.04.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.04.002/
[1] et al. Planck 2013 results, XVI: cosmological parameters | arXiv
[2] Space-time explorer and quantum equivalence space test, assessment study report of STE–QUEST http://sci.esa.int/ste-quest/53445-ste-quest-yellow-book/ (ESA/SRE 6)
[3] Quantum tests of the Einstein equivalence principle with the STE–QUEST space mission, Adv. Space Res., Volume 55 (2015) no. 1, pp. 501-524 | DOI
[4] Tests of Lorentz invariance using a microwave resonator, Phys. Rev. Lett., Volume 90 (2003), p. 060402 | DOI
[5] Improved test of Lorentz invariance in electrodynamics, Phys. Rev. D, Volume 70 (2004), p. 051902 | DOI
[6] Whispering gallery resonators and tests of Lorentz invariance, Gen. Relativ. Gravit., Volume 36 (2004) no. 10, pp. 2351-2372 | DOI
[7] Tests of relativity by complementary rotating Michelson–Morley experiments, Phys. Rev. Lett., Volume 99 (2007), p. 050401 | DOI
[8] Testing local Lorentz and position invariance and variation of fundamental constants by searching the derivative of the comparison frequency between a cryogenic sapphire oscillator and hydrogen maser, Phys. Rev. D, Volume 81 (2010), p. 022003 | DOI
[9] Testing local position and fundamental constant invariance due to periodic gravitational and boost using long-term comparison of the SYRTE atomic fountains and H-masers, Phys. Rev. D, Volume 87 (2013), p. 122004 | DOI
[10] Theory and Experiment in Gravitational Physics, Cambridge University Press, 1993
[11] The confrontation between general relativity and experiment, Living Rev. Relativ., Volume 17 (2014) no. 4 | DOI
[12] Apparent weight of photons, Phys. Rev. Lett., Volume 4 (1960), pp. 337-341 | DOI
[13] On experimental tests of the general theory of relativity, Am. J. Phys., Volume 28 (1960) no. 4, pp. 340-343
[14] Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D, Volume 11 (1975), pp. 245-247 | DOI
[15] Energy conservation and the principle of equivalence, Ann. Phys., Volume 118 (1979) no. 1, pp. 156-186 | DOI
[16] Does an atom interferometer test the gravitational redshift at the Compton frequency?, Class. Quantum Gravity, Volume 28 (2011) no. 14, p. 145017 | DOI
[17] Postulate versus observation in the special theory of relativity, Rev. Mod. Phys., Volume 21 (1949), pp. 378-382 | DOI
[18] A test theory of special relativity, I: simultaneity and clock synchronization, Gen. Relativ. Gravit., Volume 8 (1977), pp. 497-513 | DOI
[19] A test theory of special relativity, II: first order tests, Gen. Relativ. Gravit., Volume 8 (1977), pp. 515-524 | DOI
[20] A test theory of special relativity, III: second-order tests, Gen. Relativ. Gravit., Volume 8 (1977), pp. 809-814 | DOI
[21] How to test the special theory of relativity on the rotating earth, Phys. Lett. A, Volume 132 (1988), pp. 310-312 | DOI
[22] Generalisation of the test theory of special relativity to non-inertial frames, J. Phys. A, Math. Gen., Volume 22 (1989), pp. 1589-1597 | DOI
[23] CPT violation and the standard model, Phys. Rev. D, Volume 55 (1997), pp. 6760-6774 | DOI
[24] Lorentz-violating extension of the standard model, Phys. Rev. D, Volume 58 (1998), p. 116002 | DOI
[25] Signals for Lorentz violation in electrodynamics, Phys. Rev. D, Volume 66 (2002) no. 5, p. 056005 | arXiv | DOI
[26] Gravity, Lorentz violation, and the standard model, Phys. Rev. D, Volume 69 (2004), p. 105009 | DOI
[27] What do we know about Lorentz invariance?, Rep. Prog. Phys., Volume 77 (2014) no. 6, p. 062901 | DOI
[28] Data tables for Lorentz and CPT violation, Rev. Mod. Phys., Volume 83 (2011), pp. 11-31 | DOI
[29] Cold atom clock test of Lorentz invariance in the matter sector, Phys. Rev. Lett., Volume 96 (2006), p. 060801 | DOI
[30] Atom interferometry tests of local Lorentz invariance in gravity and electrodynamics, Phys. Rev. D, Volume 80 (2009), p. 016002 | DOI
[31] Signals for Lorentz violation in post-Newtonian gravity, Phys. Rev. D, Volume 74 (2006), p. 045001 | DOI
[32] Constraints on Lorentz violation from clock-comparison experiments, Phys. Rev. D, Volume 60 (1999), p. 116010 | DOI
[33] Clock-comparison tests of Lorentz and CPT symmetry in space, Phys. Rev. Lett., Volume 88 (2002), p. 090801 | DOI
[34] Probing Lorentz and CPT violation with space-based experiments, Phys. Rev. D, Volume 68 (2003), p. 125008 | DOI
[35] Nonrelativistic quantum Hamiltonian for Lorentz violation, J. Math. Phys., Volume 40 (1999) no. 12, pp. 6245-6253 | DOI
[36] Probing Lorentz violation with Doppler-shift experiments, Phys. Rev. D, Volume 72 (2005), p. 016005 | DOI
[37] ACES mission objectives and scientific requirements, 2010 (Tech. rep., ESA, ACE-ESA-TN-001, Issue 3, Rev 0)
[38] Atomic time, clocks, and clock comparisons in relativistic timespace: a review (S.M. Kopeikin, ed.), Frontiers in Relativistiv Celectial Mechanics, Volume 2: Applications and Experiments, De Gruyter, 2014
[39] A test of the equivalence principle using a space-borne clock, Gen. Relativ. Gravit., Volume 10 (1979), pp. 181-204 | DOI
[40] Test of relativistic gravitation with a space-borne hydrogen maser, Phys. Rev. Lett., Volume 45 (1980), pp. 2081-2084 | DOI
[41] Clocks and spaceborne tests of relativistic gravitation, Adv. Space Res., Volume 9 (1989), pp. 21-28 | DOI
[42] Improved tests of local position invariance using Rb87 and Cs133 fountains, Phys. Rev. Lett., Volume 109 (2012) no. 8, p. 080801 | arXiv | DOI
[43] Test of time dilation using stored ions as clocks at relativistic speed, Phys. Rev. Lett., Volume 113 (2014) no. 12, p. 120405 | arXiv | DOI
[44] Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle, Phys. Rev. Lett., Volume 93 (2004), p. 240404 | DOI
[45] Quantum test of the universality of free fall, Phys. Rev. Lett., Volume 112 (2014), p. 203002 | DOI
[46] Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects, Phys. Rev. Lett., Volume 113 (2014), p. 023005 | DOI
[47] Noon–midnight red shift, Phys. Rev., Volume 121 (1961), pp. 337-342 | DOI
[48] Solar gravitational redshift from the infrared oxygen triplet, Astrophys. J., Volume 376 (1991), pp. 757-760 | DOI
[49] The Galileo solar redshift experiment, Phys. Rev. Lett., Volume 70 (1993), pp. 2213-2216 | DOI
[50] Matter–gravity couplings and Lorentz violation, Phys. Rev. D, Volume 83 (2011), p. 016013 | DOI
[51] Prospects for large relativity violations in matter–gravity couplings, Phys. Rev. Lett., Volume 102 (2009), p. 010402 | DOI
Cited by Sources:
Comments - Policy