During the last decades, increasingly precise astronomical observations of the Galactic Centre region at radio, infrared, and X-ray wavelengths laid the foundations for a detailed understanding of the high-energy astroparticle physics of this most remarkable location in the Galaxy. Recently, observations of this region in high energy (HE, 10 MeV–100 GeV) and very high energy (VHE, ) γ-rays added important insights into the emerging picture of the Galactic nucleus as a most violent and active region where acceleration of particles to highest energies and their transport can be studied in great detail. We review the current understanding of the γ-ray emission emanating from the Galactic Centre.
Pendant les dernières décennies, la région du centre galactique a fait l'objet d'observations astronomiques de plus en plus précises en radio, en infrarouge et en rayons X, qui ont fourni les bases de l'étude des phenoménes de haute énergie à l'oeuvre dans cette partie remarquable de notre galaxie. Récemment, les observations de cette région dans le domaine des rayons gamma de haute et de très haute énergie (HE, 10 MeV–100 GeV, et VHE au-dessus de ) ont apporté d'importantes informations, donnant du noyau galactique l'image d'une région active et violente où l'on peut étudier en détail l'accélération des particules aux très hautes énergies et leur transport. Cet article présente les interprétations actuelles des émissions gamma issues du centre galactique.
Mots-clés : Rayons gamma, Observations, Centre galactique, Bulles de Fermi
Meng Su 1; Christopher van Eldik 2
@article{CRPHYS_2015__16_6-7_686_0, author = {Meng Su and Christopher van Eldik}, title = {Gamma rays from the {Galactic} {Centre} region}, journal = {Comptes Rendus. Physique}, pages = {686--703}, publisher = {Elsevier}, volume = {16}, number = {6-7}, year = {2015}, doi = {10.1016/j.crhy.2015.09.001}, language = {en}, }
Meng Su; Christopher van Eldik. Gamma rays from the Galactic Centre region. Comptes Rendus. Physique, Gamma-ray astronomy / Astronomie des rayons gamma, Volume 16 (2015) no. 6-7, pp. 686-703. doi : 10.1016/j.crhy.2015.09.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.09.001/
[1] Observations of galactic radiation at frequencies of 1200 and 3000 Mc/s, Aust. J. Sci. Res., A Phys. Sci., Volume 4 (1951), p. 459
[2] Probable observation of the galactic nucleus at 400 Mc/s, Nature, Volume 173 (1954) no. 4, pp. 985-987
[3] Intense sub-arcsecond structure in the Galactic Center, Astrophys. J., Volume 194 (1974), pp. 265-270
[4] The Galactic Center: a laboratory for AGN?, Astron. Astrophys. Rev., Volume 7 (1996) no. 4, pp. 289-388
[5] The Galactic Center environment, Annu. Rev. Astron. Astrophys., Volume 34 (1996), pp. 645-702
[6] et al. A lower limit of 50 microgauss for the magnetic field near the Galactic Centre, Nature, Volume 463 (2010) no. 7, pp. 65-67
[7] et al. The large area telescope on the Fermi gamma-ray space telescope mission, Astrophys. J., Volume 697 (2009), pp. 1071-1102
[8] The status of the HESS project, New Astron. Rev., Volume 48 (2004), pp. 331-337
[9] et al. Performance of the MAGIC stereo system obtained with Crab Nebula data, Astropart. Phys., Volume 35 (2012), pp. 435-448
[10] et al. Status of the VERITAS observatory (F.A. Aharonian; W. Hofmann; F. Rieger, eds.), American Institute of Physics Conference Series, AIP Conf. Series, vol. 1085, December 2008 , pp. 657-660
[11] et al. A wide-field 90 centimeter VLA image of the Galactic Center region, Astron. J., Volume 119 (2000) no. 1, pp. 207-240
[12] Carbon monoxide in the inner Galaxy, Astrophys. J., Volume 216 (1977), pp. 381-403
[13] et al. Kinematics of carbon monoxide observed within one degree of the Galactic Center, Astrophys. J., Volume 213 (1977), pp. 38-42
[14] Dense molecular clouds in the Galactic Center region. I. Observations and data, Astrophys. J. Suppl., Volume 120 (1999), pp. 1-39
[15] Galactic-Center molecular arms, ring, and expanding shell. I. Kinematical structures in longitude–velocity diagrams, Publ. Astron. Soc. Jpn., Volume 47 (1995), pp. 527-549
[16] et al. A molecular face-on view of the Galactic Centre region, Mon. Not. R. Astron. Soc., Volume 349 (2004), pp. 1167-1178
[17] Compact radio sources in the Galactic Nucleus, Nature, Volume 233 (1971), pp. 112-114
[18] et al. A Chandra study of Sagittarius A East: a supernova remnant regulating the activity of our Galactic Center?, Astrophys. J., Volume 570 (2002) no. 2, pp. 671-687
[19] et al. A candidate neutron star associated with Galactic Center supernova remnant Sagittarius A East, Astrophys. J., Volume 631 (2005), pp. 964-975
[20] et al. X-ray spectrum of Sagittarius A East, Publ. Astron. Soc. Jpn., Volume 59 (2007), pp. 237-243
[21] On the nature of the nonthermal radio emission from the Galactic Center, Astron. Astrophys., Volume 30 (1974), p. 37
[22] The radio structure of SGR A, Astron. Astrophys., Volume 122 (1983), pp. 143-150
[23] et al. A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way, Nature, Volume 419 (2002), pp. 694-696
[24] et al. Full three dimensional orbits for multiple stars on close approaches to the central supermassive black hole, Astron. Nachr. Suppl., Volume 324 (2003), pp. 527-533
[25] et al. SINFONI in the Galactic Center: young stars and IR flares in the central light month, Astrophys. J., Volume 628 (2005), pp. 246-259
[26] et al. Monitoring stellar orbits around the massive black hole in the Galactic Center, Astrophys. J., Volume 692 (2009), pp. 1075-1109
[27] et al. Detection of the intrinsic size of Sagittarius A* through closure amplitude imaging, Science, Volume 304 (2004), pp. 704-708
[28] et al. Hard X-ray images of the Galactic Centre, Nature, Volume 330 (1987), pp. 544-547
[29] et al. Rapid X-ray flaring from the direction of the supermassive black hole at the Galactic Centre, Nature, Volume 413 (2001), pp. 45-48
[30] et al. XMM-Newton observation of the brightest X-ray flare detected so far from Sgr A*, Astron. Astrophys., Volume 407 (2003), p. L17-L20
[31] et al. A Chandra/HETGS census of X-ray variability from Sgr A* during 2012, Astrophys. J., Volume 774 (2013), p. 42
[32] et al. The X-ray flaring properties of Sgr A* during six years of monitoring with swift, Astrophys. J., Volume 769 (2013), p. 155
[33] et al. The nature of the 10 kilosecond X-ray flare in Sgr A*, Astron. Astrophys., Volume 379 (2001), p. L13-L16
[34] High-energy gamma rays from the massive black hole in the Galactic Center, Astrophys. J., Volume 619 (2005), pp. 306-313
[35] Stochastic electron acceleration during the near-infrared and X-ray flares in Sagittarius A*, Astrophys. J., Volume 636 (2006), pp. 798-803
[36] et al. Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre, Nature, Volume 425 (2003), pp. 934-937
[37] et al. A persistent high-energy flux from the heart of the Milky Way: INTEGRAL's view of the Galactic Center, Astrophys. J., Volume 636 (2006), pp. 275-289
[38] Galactic Centre stellar winds and Sgr A* accretion, Mon. Not. R. Astron. Soc., Volume 366 (2006), pp. 358-372
[39] Discovery of a superluminal Fe K echo at the Galactic Center: the Glorious Past of Sgr A* preserved by molecular clouds, Astrophys. J., Volume 714 (2010), pp. 732-747
[40] Fading hard X-ray emission from the Galactic Center molecular cloud Sgr B2, Astrophys. J., Volume 719 (2010), pp. 143-150
[41] Echoes of multiple outbursts of Sagittarius revealed by Chandra, Astron. Astrophys., Volume 558 (2013)
[42] Giant gamma-ray bubbles from Fermi-LAT: active galactic nucleus activity or bipolar galactic wind?, Astrophys. J., Volume 724 (2010), pp. 1044-1082
[43] COS-B studies of high-latitude gamma rays, Adv. Space Res., Volume 3 (1984), pp. 87-89
[44] The final COS-B database – in-flight calibration of sensitivity and instrumental background behaviour, Astron. Astrophys. Suppl., Volume 67 (1987), pp. 283-296
[45] High-energy gamma-ray results from the second small astronomy satellite, Astrophys. J., Volume 198 (1975), pp. 163-182
[46] Diffuse Galactic gamma-ray emission, Annu. Rev. Astron. Astrophys., Volume 27 (1989), pp. 469-516
[47] The ‘extragalactic’ diffuse gamma ray intensity, Astropart. Phys., Volume 7 (1997), pp. 21-25
[48] Evidence for a Galactic gamma-ray halo, New Astron., Volume 3 (1998), pp. 539-561
[49] Space detectors for gamma rays (100 MeV–100 GeV): from EGRET to Fermi LAT, C. R. Physique, Volume 16 (2015), pp. 600-609 ( in this issue )
[50] Ground-based detectors in very-high-energy gamma-ray astronomy, C. R. Physique, Volume 16 (2015), pp. 610-627 ( in this issue )
[51] et al. Astrophys. J., 608 (2004), p. L97-L100
[52] et al. Astron. Astrophys., 425 (2004), p. L13-L17
[53] et al. Astrophys. J., 606 (2004), p. L115-L118
[54] et al. Astrophys. J., 638 (2006), p. L101-L104
[55] et al. Spectrum and variability of the Galactic Center VHE γ-ray source HESS J1745-290, Astron. Astrophys. Rev., Volume 503 (2009), pp. 817-825
[56] A. Viana, M. Moulin, H.E.S.S. Collaboration, in: Proc. 33rd International Cosmic Ray Conference, 2013, in press.
[57] et al. The high-energy, arcminute-scale Galactic Center gamma-ray source, Astrophys. J., Volume 726 (2011), p. 60
[58] et al. Fermi large area telescope second source catalog, Astrophys. J. Suppl., Volume 199 (2012), p. 31
[59] et al. Simultaneous HESS and Chandra observations of Sagittarius during an X-ray flare, Astron. Astrophys., Volume 492 (2008), p. L25-L28
[60] The VERITAS Collaboration, Very-high energy observations of the Galactic Center region by VERITAS in 2010–2012, arXiv e-prints, June 2014.
[61] Mon. Not. R. Astron. Soc., 367 (2006), pp. 937-944
[62] Gamma-rays from millisecond pulsar population within the central stellar cluster in the Galactic Centre, Mon. Not. R. Astron. Soc., Volume 435 (2013), p. L14-L18
[63] Observations of supernova remnants and pulsar wind nebulae at gamma-ray energies, C. R. Physique, Volume 16 (2015), pp. 674-685 ( in this issue )
[64] et al. The AGASA and SUGAR anisotropies and TeV gamma rays from the Galactic Center: a possible signature of extremely high energy neutrons, Astrophys. J., Volume 622 (2005), pp. 892-909
[65] A revised Galactic supernova remnant catalogue, Bull. Astron. Soc. India, Volume 37 (2009), p. 45
[66] et al. Astrophys. J., 524 (1999), pp. 816-823
[67] et al. Localizing the VHE γ-ray source at the Galactic Centre, Mon. Not. R. Astron. Soc., Volume 402 (2010), pp. 1877-1882
[68] Astrophys. J., 657 (2007), pp. 302-307
[69] TeV gamma rays from the Galactic Center direct and indirect links to the massive black hole in Sgr A, Astrophys. Space Sci., Volume 300 (2005), pp. 255-265
[70] et al. Stochastic acceleration in the Galactic Center HESS source, Astrophys. J., Volume 647 (2006), pp. 1099-1105
[71] Injected spectrum for TeV γ-ray emission from the Galactic Center, Res. Astron. Astrophys., Volume 9 (2009), pp. 761-769
[72] Modelling the time-dependence of the TeV γ-ray source at the Galactic Centre, Mon. Not. R. Astron. Soc., Volume 410 (2011), pp. 1521-1526
[73] Diffusive cosmic-ray acceleration in Sagittarius A*, Astrophys. J. Lett., Volume 757 (2012)
[74] The morphology of hadronic emission models for the gamma-ray source at the Galactic Center, Astrophys. J., Volume 753 (2012), p. 41
[75] TeV emission from the Galactic Center black hole plerion, Astrophys. J., Volume 617 (2004), p. L123-L126
[76] A leptonic model of steady high-energy gamma-ray emission from Sgr A*, Astrophys. J., Volume 748 (2012), p. 34
[77] A hybrid model of GeV–TeV gamma ray emission from the Galactic Center, J. Phys. G, Nucl. Phys., Volume 40 (2013) no. 6
[78] A population of gamma-ray emitting globular clusters seen with the Fermi Large Area Telescope, Astron. Astrophys., Volume 524 (2010)
[79] et al. Nature, 439 (2006), pp. 695-698
[80] G0.9+0.1 and the emerging class of composite supernova remnants, Astrophys. J., Volume 314 (1987), pp. 203-214
[81] Chandra observations of the pulsar wind nebula in supernova remnant G0.9+0.1, Astrophys. J., Volume 556 (2001), p. L107-L111
[82] XMM-Newton spectral analysis of the Pulsar Wind Nebula within the composite SNR <ASTROBJ>G0.9+0.1</ASTROBJ>, Astron. Astrophys., Volume 401 (2003), pp. 197-203
[83] Discovery of the energetic pulsar J1747-2809 in the supernova remnant G0.9+0.1, Astrophys. J. Lett., Volume 700 (2009), p. L34-L38
[84] et al. Astron. Astrophys., 432 (2005), p. L25-L29
[85] et al. The H.E.S.S. survey of the inner Galaxy in very high energy gamma rays, Astrophys. J., Volume 636 (2006), pp. 777-797
[86] et al. Exploring a SNR/molecular cloud association within HESS J1745-303, Astron. Astrophys., Volume 483 (2008), pp. 509-517
[87] X-ray observation of very high energy gamma-ray source, HESS J1745-303, with Suzaku, Astrophys. J., Volume 691 (2009), pp. 1854-1861
[88] et al. Exploring the dark accelerator HESS J1745-303 with the Fermi Large Area Telescope, Astrophys. J., Volume 735 (2011), p. 115
[89] Diffuse TeV emission at the Galactic Centre, Mon. Not. R. Astron. Soc., Volume 387 (2008), pp. 987-997
[90] Diffusive cosmic-ray acceleration at the Galactic Centre, Mon. Not. R. Astron. Soc., Volume 410 (2011), p. L23-L27
[91] Assessing the feasibility of cosmic-ray acceleration by magnetic turbulence at the Galactic Center, Astrophys. J., Volume 750 (2012), p. 21
[92] Stochastic acceleration of cosmic rays in the Central Molecular Zone of the Galaxy, Publ. Astron. Soc. Jpn., Volume 63 (2011), p. L63-L66
[93] Giant gamma-ray bubbles from Fermi-LAT: active galactic nucleus activity or bipolar galactic wind?, Astrophys. J., Volume 724 (2010), pp. 1044-1082
[94] A multiwavelength view of a mass outflow from the Galactic Center, Astrophys. J., Volume 708 (2010), pp. 474-484
[95] The center of the Galaxy in the recent past – a view from GRANAT, Astrophys. J., Volume 407 (1993), pp. 606-610
[96] ASCA view of our Galactic Center: remains of past activities in X-rays?, Publ. Astron. Soc. Jpn., Volume 48 (1996), pp. 249-255
[97] A 408 MHz all-sky continuum survey, Astron. Astrophys., Volume 100 (1981), pp. 209-219
[98] Map of dust IR emission for use in estimation of reddening and CMBR foregrounds, 191st AAS Meeting, Bull. Am. Astron. Soc., vol. 29, December 1997 , p. 1354
[99] Microwave ISM emission observed by WMAP, Astrophys. J., Volume 614 (2004), pp. 186-193
[100] WMAP Microwave Emission Interpreted as Dark Matter Annihilation in the Inner Galaxy, 2004
[101] Extended anomalous foreground emission in the WMAP three-year data, Astrophys. J., Volume 680 (2008), pp. 1222-1234
[102] The two young star disks in the central parsec of the Galaxy: properties, dynamics, and formation, Astrophys. J., Volume 643 (2006), pp. 1011-1035
[103] Acceleration of cosmic rays in the Loop I ‘supernova remnant’?, Nature, Volume 314 (1985), pp. 515-517
[104] J.-M. Casandjian, I. Grenier, for the Fermi Large Area Telescope Collaboration, High energy gamma-ray emission from the Loop I region, arXiv e-prints, December 2009.
[105] Gamma-ray pulsars: a gold mine, C. R. Physique, Volume 16 (2015), pp. 641-660 ( in this issue )
[106] The spectrum and morphology of the Fermi Bubbles, Astrophys. J., Volume 793 (2014), p. 64
[107] P. Brun, J. Cohen-Tanugi, to be published in a forthcoming dossier of C. R. Physique, continuation of the present one (2016).
[108] L. Goodenough, D. Hooper, Possible evidence for dark matter annihilation in the inner Milky Way from the Fermi gamma ray space telescope, arXiv e-prints, October 2009.
[109] Dark matter annihilation in the Galactic Center as seen by the Fermi gamma ray space telescope, Phys. Lett. B, Volume 697 (2011), pp. 412-428
[110] Origin of the gamma rays from the Galactic Center, Phys. Rev. D, Volume 84 (2011) no. 12, p. 123005
[111] Detection of a gamma-ray source in the Galactic Center consistent with extended emission from dark matter annihilation and concentrated astrophysical emission, Phys. Rev. D, Volume 86 (2012) no. 8
[112] Two emission mechanisms in the Fermi bubbles: a possible signal of annihilating dark matter, Phys. Dark Universe, Volume 2 (2013), pp. 118-138
[113] Dark matter and pulsar model constraints from Galactic Center Fermi-LAT gamma-ray observations, Phys. Rev. D, Volume 88 (2013) no. 8
[114] W.-C. Huang, A. Urbano, W. Xue, Fermi bubbles under dark matter scrutiny. Part I: Astrophysical analysis, arXiv e-prints, July 2013.
[115] Astrophysical and dark matter interpretations of extended gamma-ray emission from the Galactic Center, Phys. Rev. D, Volume 90 (2014) no. 2
[116] Fitting the Fermi-LAT GeV excess: on the importance of including the propagation of electrons from dark matter, Phys. Rev. D, Volume 90 (2014) no. 4
[117] B. Zhou, Y.-F. Liang, X. Huang, X. Li, Y.-Z. Fan, L. Feng, J. Chang, GeV excess in the Milky Way: depending on diffuse Galactic gamma ray emission template?, arXiv e-prints, June 2014.
[118] T. Daylan, D.P. Finkbeiner, D. Hooper, T. Linden, S.K.N. Portillo, N.L. Rodd, T.R. Slatyer, The characterization of the gamma-ray signal from the central Milky Way: a compelling case for annihilating dark matter, arXiv e-prints, February 2014.
[119] Sharper Fermi LAT images: instrument response functions for an improved event selection, Astrophys. J., Volume 796 (2014), p. 54
[120] The consistency of Fermi-LAT observations of the Galactic Center with a millisecond pulsar population in the central stellar cluster, J. Cosmol. Astropart. Phys., Volume 3 (2011), p. 10
[121] Millisecond pulsars cannot account for the inner Galaxy's GeV excess, Phys. Rev. D, Volume 88 (2013) no. 8
[122] A tale of tails: dark matter interpretations of the Fermi GeV excess in light of background model systematics, Phys. Rev. D, Volume 91 (2015) no. 6
[123] F. Calore, I. Cholis, C. Weniger, Background model systematics for the Fermi GeV excess, arXiv e-prints, August 2014.
[124] Millisecond pulsar interpretation of the Galactic Center gamma-ray excess, J. High Energy Astrophys., Volume 3 (2014), pp. 1-8
[125] J. Petrovic, P.D. Serpico, G. Zaharijas, Millisecond pulsars and the Galactic Center gamma-ray excess: the importance of luminosity function and secondary emission, arXiv e-prints, November 2014.
[126] S.K. Lee, M. Lisanti, B.R. Safdi, Distinguishing dark matter from unresolved point sources in the inner Galaxy with photon statistics, arXiv e-prints, December 2014.
[127] Cosmic ray protons in the inner Galaxy and the Galactic Center gamma-ray excess, Phys. Rev. D, Volume 90 (2014) no. 2
[128] J. Petrovic, P. Dario Serpico, G. Zaharijas, Galactic Center gamma-ray “excess” from an active past of the Galactic Centre?, arXiv e-prints, May 2014.
[129] C. R. Physique (2016) in press (special issue), continuation of the present one
[130] PANGU: a high resolution gamma-ray space telescope, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9144, July 2014
[131] A.M. Galper, et al., The space-based gamma-ray telescope GAMMA-400 and its scientific goals, arXiv e-prints, June 2013.
[132] et al. Introducing the CTA concept, Astropart. Phys., Volume 43 (2013), pp. 3-18
[133] ARGO-YBJ experiment results and prospects in LHAASO project, Int. J. Mod. Phys. Conf. Ser., Volume 10 (2012), pp. 147-158
Cited by Sources:
Comments - Policy