In the past few years, gamma-ray astronomy has entered a golden age thanks to two major breakthroughs: Cherenkov telescopes on the ground and the Large Area Telescope (LAT) onboard the Fermi satellite. The sample of supernova remnants (SNRs) detected at gamma-ray energies is now much larger: it goes from evolved supernova remnants interacting with molecular clouds up to young shell-type supernova remnants and historical supernova remnants. Studies of SNRs are of great interest, as these analyses are directly linked to the long standing issue of the origin of the Galactic cosmic rays. In this context, pulsar wind nebulae (PWNe) need also to be considered since they evolve in conjunction with SNRs. As a result, they frequently complicate interpretation of the gamma-ray emission seen from SNRs and they could also contribute directly to the local cosmic ray spectrum, particularly the leptonic component. This paper reviews the current results and thinking on SNRs and PWNe and their connection to cosmic ray production.
Au cours des dernières années, l'astronomie gamma est entrée dans un âge d'or grâce à deux avancées majeures : les télescopes Tcherenkov au sol et le Large Area Telescope (LAT) à bord du satellite Fermi. L'échantillon des restes de supernova (SNR) détectés en rayons gamma de haute énergie est maintenant beaucoup plus vaste : il va des vestiges de supernovae évolués en interaction avec des nuages moléculaires jusqu'aux jeunes SNR en coquille et aux SNR historiques. Les études des SNR sont d'un grand intérêt, car ces analyses sont directement liées à la question de l'origine des rayons cosmiques galactiques. Dans ce contexte, les nébuleuses de pulsars (PWN) doivent également être prises en compte, car elles évoluent en conjonction avec les SNR. En conséquence, elles compliquent souvent l'interprétation de l'émission gamma en provenance des SNR et pourraient aussi contribuer directement au spectre local de rayons cosmiques, en particulier à sa composante leptonique. Cet article passe en revue les résultats et réflexions actuels concernant les SNR et les PWN, ainsi que leur connexion avec la production des rayons cosmiques.
Mots-clés : Rayons cosmiques, Vestiges de supernovae, Nébuleuses de pulsar
John W. Hewitt 1; Marianne Lemoine-Goumard 2
@article{CRPHYS_2015__16_6-7_674_0, author = {John W. Hewitt and Marianne Lemoine-Goumard}, title = {Observations of supernova remnants and pulsar wind nebulae at gamma-ray energies}, journal = {Comptes Rendus. Physique}, pages = {674--685}, publisher = {Elsevier}, volume = {16}, number = {6-7}, year = {2015}, doi = {10.1016/j.crhy.2015.08.015}, language = {en}, }
TY - JOUR AU - John W. Hewitt AU - Marianne Lemoine-Goumard TI - Observations of supernova remnants and pulsar wind nebulae at gamma-ray energies JO - Comptes Rendus. Physique PY - 2015 SP - 674 EP - 685 VL - 16 IS - 6-7 PB - Elsevier DO - 10.1016/j.crhy.2015.08.015 LA - en ID - CRPHYS_2015__16_6-7_674_0 ER -
John W. Hewitt; Marianne Lemoine-Goumard. Observations of supernova remnants and pulsar wind nebulae at gamma-ray energies. Comptes Rendus. Physique, Gamma-ray astronomy / Astronomie des rayons gamma, Volume 16 (2015) no. 6-7, pp. 674-685. doi : 10.1016/j.crhy.2015.08.015. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.08.015/
[1] C. R. Physique, 16 (2015), pp. 628-640 ( in this issue )
[2] Mon. Not. R. Astron. Soc., 225 (1987), p. 615
[3] Space Sci. Rev., 58 (1991), p. 259
[4] International Cosmic Ray Conference, vol. 11, 1977, p. 132
[5] Dokl. Akad. Nauk SSSR, 234 (1977), p. 1306
[6] Mon. Not. R. Astron. Soc., 182 (1978), p. 147
[7] Astrophys. J. Lett., 221 (1978)
[8] Astrophys. J., 526 (1999), p. 385
[9] Interstellar Gas Dynamics, vol. 39, 1970, p. 229
[10] Astrophys. J., 334 (1988), p. 252
[11] Astron. Astrophys., 225 (1989), p. 179
[12] Astrophys. J., 497 (1998), p. 807
[13] Mon. Not. R. Astron. Soc., 434 (2013), p. 3368
[14] Astrophys. J., 511 (1999), p. 798
[15] Astrophys. J., 744 (2012), p. 71
[16] Annu. Rev. Astron. Astrophys., 44 (2006), p. 17
[17] C. R. Physique, 16 (2015), pp. 641-660 ( in this issue )
[18] Astrophys. J., 703 (2009), p. 2051
[19] Mon. Not. R. Astron. Soc., 427 (2012), p. 415
[20] et al. Astrophys. J. Lett., 782 (2014)
[21] Astrophys. J., 540 (2000), p. 292
[22] Mon. Not. R. Astron. Soc., 430 (2013), p. 2873
[23] et al. Astrophys. J., 796 (2014), p. 82
[24] et al. Science, 347 (2015), p. 406
[25] et al. Astrophys. J., 717 (2010), p. 1140
[26] et al. Astrophys. J. Lett., 710 (2010)
[27] et al. Astron. Astrophys., 474 (2007), p. 937
[28] et al. Astrophys. J., 714 (2010), p. 163
[29] et al. Astrophys. J. Lett., 744 (2012)
[30] et al. Astrophys. J. Lett., 730 (2011)
[31] et al. Astrophys. J., 779 (2013), p. 117
[32] Astron. Astrophys., 538 (2012)
[33] Astron. Astrophys., 537 (2012)
[34] et al. Astron. Astrophys., 488 (2008), p. 219
[35] Astrophys. J., 756 (2012), p. 6
[36] et al. Serb. Astron. J., 189 (2014), p. 41
[37] et al. Astrophys. J., 798 (2015), p. 98
[38] et al. Mon. Not. R. Astron. Soc., 441 (2014), p. 790
[39] et al. Astropart. Phys., 62 (2015), p. 152
[40] et al. Nature, 432 (2004), p. 75
[41] et al. Astron. Astrophys., 437 (2005)
[42] et al. Astron. Astrophys., 464 (2011), p. 235
[43] et al. Astrophys. J., 692 (2011), p. 1500
[44] et al. Astron. Astrophys., 512 (2010)
[45] et al. Astron. Astrophys., 531 (2011)
[46] et al. Astrophys. J., 734 (2011), p. 28
[47] et al. Astrophys. J. Lett., 740 (2011)
[48] Astrophys. J., 785 (2014)
[49] Astron. Astrophys., 318 (1997)
[50] Proc. Roentgenstrahlung from the Universe (H.U. Zimmermann; J.H. Trümper; H. Yorke, eds.), 1996, p. 267
[51] Publ. Astron. Soc. Jpn., 54 (2002)
[52] Astron. Astrophys., 511 (2010)
[53] Astron. Astrophys., 577 (2015), p. 12
[54] Astron. Astrophys., 551 (2013)
[55] et al. Science, 339 (2013), p. 807
[56] Astron. Astrophys., 505 (2009), p. 169
[57] et al. Astron. Astrophys. (2015) | DOI
[58] Space Sci. Rev. (2014), p. 26
[59] et al. Astrophys. J. Lett., 742 (2011)
[60] et al. Astrophys. J., 759 (2012), p. 89
[61] et al., 2014 | arXiv
[62] et al. Astrophys. J., 741 (2011), p. 44
[63] et al. Astrophys. J., 752 (2012), p. 135
[64] Astron. Astrophys., 553 (2013)
[65] Mon. Not. R. Astron. Soc., 124 (1962), p. 179
[66] Astrophys. J., 260 (1982), p. 625
[67] Astrophys. J. Lett., 723 (2010)
[68] Astrophys. J. Lett., 723 (2010)
[69] Nat. Commun., 2 (2011), p. 194
[70] Mon. Not. R. Astron. Soc., 410 (2011), p. 1577
[71] Astrophys. J. Lett., 784 (2014)
[72] Mon. Not. R. Astron. Soc., 396 (2009), p. 1629
[73] et al. Astrophys. J. Lett., 749 (2012)
[74] et al. Astron. Astrophys., 481 (2008), p. 401
[75] et al. Astrophys. J., 786 (2014), p. 145
[76] Astrophys. J. Lett., 707 (2009)
[77] et al. Astrophys. J., 773 (2013), p. 77
[78] et al. Proceedings of the 33rd ICRC, 2013
[79] et al. Proceedings of the 30th ICRC, vol. 2, 2008, pp. 823-826
[80] et al. Astron. Astrophys., 548 (2012)
[81] Astrophys. J., 563 (2001), p. 806
[82] Neutron Stars and Pulsars, Astrophysics and Space Science Library, vol. 357, Springer, Berlin, 2009, p. 451
[83] Astrophys. J., 629 (2005), p. 1017
[84] et al. Astron. Astrophys., 548 (2012)
[85] et al. Nature, 458 (2009), p. 607
[86] et al. Phys. Rev. Lett., 102 (2009), p. 18
[87] et al. Phys. Rev. Lett., 110 (2013)
[88] et al. J. Cosmol. Astropart. Phys., 1404 (2014)
[89] Phys. Rev. Lett., 103 (2009), p. 5
[90] et al. Astrophys. J. Lett., 727 (2011)
[91] Rep. Prog. Phys., 77 (2014), p. 6
[92] Astrophys. J., 746 (2012), p. 148
[93] Astrophys. J., 741 (2011), p. 39
[94] et al. Astrophys. J., 735 (2011)
[95] Astrophys. J., 665 (2007)
[96] J. Knoedlseder, to be published in a forthcoming dossier of C. R. Physique, continuation of the present one (2016).
[97] et al. Astropart. Phys., 43 (2013), p. 276
[98] M. Renaud, et al., in: CRISM-2011 Conference Proceedings, Memoire della Societa Astronomica Italiana, 2011, p. 1.
[99] et al. Astropart. Phys., 43 (2013), p. 287
Cited by Sources:
Comments - Policy