[Instabilité de Peierls et onde de densité de charge dans les conducteurs électroniques à une dimension]
Nous passons en revue les principaux aspects structuraux et électroniques de l'instabilité Peierls–onde de densité de charge (ODC) observée dans la plupart des conducteurs inorganiques et organiques à une dimension (1D). Nous commençons par replacer la genèse de ces concepts dans une perspective historique. Puis nous présentons les faits expérimentaux à la base de la description générale de ces systèmes 1D couplés électron–phonon développée à partir des années 1970. Dans ce cadre, nous considérerons en particulier l'effet des fluctuations 1D sur les degrés de liberté structuraux et électroniques et le rôle du couplage coulombien inter-chaine dans le mécanisme de stabilisation 3D de la transition de Peierls à température finie. Nous clarifions aussi, en relation avec les données expérimentales, les différentes conditions d'adiabaticité du couplage électron–phonon. Finalement, nous illustrons avec des mesures structurales récentes les travaux pionniers de Jacques Friedel sur l'élasticité et la plasticité des ODC et leur accrochage aux défauts via la formation d'oscillations de Friedel.
We review salient structural and electronic features associated with the concomitant Peierls–charge density wave (CDW) instabilities observed in most one-dimensional (1D) inorganic and organic electronic conductors. First of all, the genesis of these concepts is placed in an historical perspective. We then present basic experimental facts supporting the general description of these 1D electron–phonon coupled systems developed in the 1970s. In this framework we shall consider in particular the role of 1D fluctuations on both lattice and electronic degrees of freedom, and of the inter-chain Coulomb coupling between CDWs in stabilizing in 3D the Peierls transition at finite temperature. We also clarify, in relation with experimental findings, the various conditions of adiabaticity of the electron–phonon coupling. Finally we illustrate by recent structural measurements the pioneering work of Jacques Friedel on CDW elasticity and plasticity and CDW pinning to defects through the appearance of Friedel oscillations.
Mot clés : Conducteurs électroniques à une dimension, Transition de Peierls, Onde de densité de charge, Anomalie de Kohn, Elasticité, plasticité et accrochage des ondes de densité de charge, Oscillations de Friedel
Jean-Paul Pouget 1
@article{CRPHYS_2016__17_3-4_332_0, author = {Jean-Paul Pouget}, title = {The {Peierls} instability and charge density wave in one-dimensional electronic conductors}, journal = {Comptes Rendus. Physique}, pages = {332--356}, publisher = {Elsevier}, volume = {17}, number = {3-4}, year = {2016}, doi = {10.1016/j.crhy.2015.11.008}, language = {en}, }
Jean-Paul Pouget. The Peierls instability and charge density wave in one-dimensional electronic conductors. Comptes Rendus. Physique, Volume 17 (2016) no. 3-4, pp. 332-356. doi : 10.1016/j.crhy.2015.11.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.11.008/
[1]
, Oxford University Press, London (1955), p. 108 (This book is issued from lectures given at Les Houches summer school in 1953. The electronic energy gain due to the setting of a PLD is mentioned in the lecture notes, while the stability of the modulated ground state is only briefly evoked in the book. This work is commented by his author in R. Peierls, More Surprises in Theoretical Physics, vol. 19, Princeton Series in Physics, Princeton University Press, 1991, section 2.3, pp. 27–30)[2] Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 223 (1954), p. 296
[3] Phase change and electron–phonon coupling in perfect crystals. Modulated structures: an introduction (T. Riste, ed.), Electron–Phonon Interactions and Phase Transitions, NATO ASI B, vol. 29, Plenum Press, New York, 1977, pp. 1-49
[4] Proc. R. Soc., Theory of Properties of Metals and Alloys, Oxford, UK, 144, 1934, p. 225 (see also, 1936)
[5] Ann. Phys., 4 (1930), p. 121
[6] Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 227 (1955), p. 214
[7] Adv. Phys., 8 (1959), p. 1
[8] J. Phys., Colloq., 25 (1970), p. 376
[9] Solid State Commun., 13 (1973), p. 12
[10] Phys. Rev., 167 (1968), p. 691
[11] Phys. Rev. B, 8 (1973), p. 571
[12] Phys. Rev. Lett., 37 (1976), p. 602
[13] Phys. Rev. Lett., 50 (1983), p. 757
[14] Phys. Rev., 82 (1951), p. 538
[15] Phys. Rev. Lett., 4 (1960), p. 462
[16] J. Phys. Radium, 20 (1959), p. 606
[17] Proc. Phys. Soc., 80 (1962), p. 489
[18] Adv. Phys., 31 (1982), p. 299
[19] Synth. Met., 6 (1996), p. 1501
[20] Phys. Rev. B, 29 (1984), p. 7023
[21] Phys. Rev. Lett., 37 (1976), p. 437
[22] Phys. Rev. B, 43 (1977), p. 424
[23] Phys. Rev. B, 68 (2003) (Here we use the general denomination of Wigner lattice although different regimes of charge localization occur in function of the magnitude of the long range Coulomb potential and of the electron density per site ρ – see The modulation observed in TTF–TCNQ [21] corresponds to the small amplitude CDW regime)
[24] Solid State Commun., 9 (1971), p. 1971
[25] Phys. Rev. B, 19 (1979), p. 402
[26] J. Phys. Chem. Lett., 44 (1983)
[27] J. Phys., Colloq., 44 (1983)
[28] Phys. Rev. B, 29 (1984), p. 4230
[29] Phys. Rev. Lett., 49 (1982), p. 402
[30] Phys. Rev. B, 62 (2000), p. 6975
[31] Phys. Rev. B, 6 (1972), p. 3409
[32] Z. Kristallogr., 219 (2004), p. 711
[33] Phys. Status Solidi B, 30 (1973), p. 1144
[34] Phys. Rev. B, 43 (1991), p. 8421
[35] Phys. Rev. B, 14 (1976), p. 2325
[36] Phys. Rev. B, 19 (1979), p. 1792
[37] Phys. Rev. B, 66 (2002)
[38] Y. Tanaka, J. Sutter, A. Baron, S. Tsutsui, H. Nakamura, Spring-8 experimental report 2005A0157-ND3d, p. 160 (unpublished).
[39] Phys. Rev. Lett., 31 (1973), p. 462
[40] J. Phys. Lett. Paris, 35 (1974)
[41] Phys. Rev. B, 90 (2014)
[42] Eur. Phys. J. B, 20 (2001), p. 321
[43] Phys. Rev. Lett., 76 (1996), p. 4050
[44] Phys. Rev. B, 72 (2005)
[45] Physica B, 407 (2012), p. 1762
[46] Phys. Rev. Lett., 76 (1996), p. 1360
[47] J. Phys. Soc. Jpn., 56 (1987), p. 3126
[48] C. Coulon, personal communication, 2005. A comparison of earlier measurements with the calculation of the thermal dependence of the SP pseudo-gap can be found in Ref. [46].
[49] C. Coulon, personal communication, 1990.
[50] Solid State Sci., 4 (2002), p. 387
[51] H.J. Schulz, personal communication (1997).
[52] Synth. Met., 103 (1999), p. 1797
[53] Physica B, 407 (2012), p. 1692
[54] For a Luttinger liquid of charge and spin velocities, and respectively, the velocity of the electron–hole pair excitations is and the velocity of the electron–hole pair excitations is (L. Dumoulin, Thesis, Université de Sherbrooke, Canada, 1997). Theory of the pure Luttinger liquid gives larger than . However, a strong decrease in the collective velocity of charge fluctuations is found in presence of electron–phonon backscattering of momentum transfer (J. Voit, H.J. Schulz, Phys. Rev. B 37 (1988) 10068). This goes with an enhancement of the tendency to form a CDW state in presence of this electron–phonon coupling.
[55] Phys. Rev. Lett., 53 (1984), p. 194
[56] Breaking of analyticity in charge density wave systems: physical interpretation and consequences (C. Schlenker, ed.), Low-Dimensional Electronic Properties of Molybdenum Bronzes and Oxides, Kluwer Acad. Publ., Dordrecht, 1989, pp. 295-405
[57] J. Phys. I, 6 (1996), p. 1059
[58] Phys. Rev. B, 62 (2000), p. 176
[59] Phys. Lett., 56A (1976), p. 302
[60] Phys. Rev. B, 23 (1981), p. 2850
[61] Solid State Commun., 97 (1996), p. 1073
[62] The crossover from one to three dimensions: Peierls and spin-Peierls instabilities (D. Jérome; L.G. Caron, eds.), Low-Dimensional Conductors and Superconductors, NATO ASI Ser., Ser. B: Phys., vol. 155, Plenum Press, New York, 1987, pp. 95-112
[63] Phys. Rev. B, 69 (2004)
[64] Solid State Commun., 45 (1983), p. 289
[65] Phys. Rev. Lett., 83 (1999), p. 800
[66] J. Phys., 49 (1988), p. 485
[67] Imperfections of charge density waves in blue bronzes (C. Schlenker, ed.), Low-Dimensional Electronic Properties of Molybdenum Bronzes and Oxides, Kluwer Acad. Publ., Dordrecht, 1989, pp. 407-448
[68] Phys. Rev. Lett., 68 (1992), p. 2374
[69] Physica B, 407 (2012), p. 1725
[70] Phys. Rev. Lett., 70 (1993), p. 845
[71] Phys. Rev. Lett., 80 (1998), p. 5631
[72] Phys. Rev. B, 85 (2012)
[73] Solid State Commun., 51 (1984), p. 585
[74] Phys. Rev. Lett., 83 (1999), p. 3514
[75] Phys. Rev. Lett., 109 (2012)
[76] Phys. Rev. Lett., 95 (2005)
[77]
, Université Paris XI, 2009 (PhD thesis)[78] Charge Density Waves in Solids (L.P. Gor'kov; G. Gruner, eds.), Modern Problems in Condensed Matter Science, vol. 25, North Holland, Amsterdam, 1989
[79] Adv. Phys., 53 (2004), p. 177
[80] J. Phys. I, 2 (1992), p. 1173
[81] J. Phys. IV, 3 (1993), p. 109
[82] J. Phys. IV, 12 (2002), p. Pr6-Pr7
[83] Phys. Rev. B, 68 (2003)
[84] Phys. Rev. B, 27 (1983), p. 7600
[85] Phys. Rev. B, 55 (1997), p. 3426
[86] Phys. Rev. B, 74 (2006)
[87] Phys. Rev. B, 32 (1985), p. 2449
[88] Phys. Rev. B, 62 (2000)
[89] J. Phys. IV, 12 (2002)
[90] In that case ' should be given by expression (5) of Ref. [88] with the phase shift bring by each soliton being opposite to the phase shift of the FOs.
[91] Physica B, 460 (2015), p. 45
[92] Phys. Rev. B, 44 (1983), p. 7169
[93] Physica B, 404 (2009), p. 382
[94] J. Phys. Condens. Matter, 20 (2008), p. 434217
[95] Phys. Rev. B, Condens. Matter, 85 (2012)
[96] Science, 252 (1991), p. 96
[97] Int. J. Mod. Phys. B, 7 (1993), p. 3973
[98] Solid State Commun., 84 (1992), p. 839
[99] J. Solid State Chem., 147 (1999), p. 26
[100] J. Phys. Condens. Matter, 23 (2011), p. 213001
[101] J. Phys. Conf. Ser., 592 (2015)
[102] Phys. Rev. Lett., 81 (1998), p. 2978
[103] J. Supercond. Nov. Magn., 28 (2015), p. 1355
[104] Physica B, 460 (2015), p. 136
[105] Solid State Phys., 21 (1968), p. 115
[106] J. Supercond. Nov. Magn., 25 (2012), p. 633
[107] J. Phys. Soc. Jpn., 81 (2012)
[108] Phys. Rev. B, 58 (1998)
[109] Phys. Rev. B, 43 (1991), p. 8431
[110] J. Phys. IV, 3 (1993), p. 215
Cité par Sources :
Commentaires - Politique