This paper presents a brief introduction to some of the systems and questions concerning one-dimensional interacting quantum systems. Historically, organic conductors and superconductors – a field extremely active in the “Laboratoire de physique des solides” in Orsay, in a good part thanks to the influence of Jacques Friedel, played a crucial role in this field. I will describe some of the aspects of this physics and also review some of the very exciting theoretical and experimental developments that took place in the 1D world in the last 15 years or so.
Cet article constitue une courte introduction à une sélection de questions et de systèmes expérimentaux ayant trait à la physique des systèmes quantiques en interaction. Historiquement, les conducteurs et supraconducteurs organiques – un domaine extrêmement actif au sein du Laboratoire de physique des solides à d'Orsay, en grande partie grâce à l'influence de Jacques Friedel, ont joué un rôle crucial dans ce domaine de recherche. Je décrirai certains des aspects de cette physique et épasserai également en revue certains des développements, tant du point de vue théorique qu'expérimental, qui se sont produits dans le monde des unidimensionnels pendant la dernière quinzaine d'années.
Thierry Giamarchi 1
@article{CRPHYS_2016__17_3-4_322_0, author = {Thierry Giamarchi}, title = {One-dimensional physics in the 21st century}, journal = {Comptes Rendus. Physique}, pages = {322--331}, publisher = {Elsevier}, volume = {17}, number = {3-4}, year = {2016}, doi = {10.1016/j.crhy.2015.11.009}, language = {en}, }
Thierry Giamarchi. One-dimensional physics in the 21st century. Comptes Rendus. Physique, Volume 17 (2016) no. 3-4, pp. 322-331. doi : 10.1016/j.crhy.2015.11.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.11.009/
[1] Principles of the Theory of Solids, Cambridge University Press, Cambridge, UK, 1972
[2] Philos. Mag., 43 (1952), p. 153
[3] Nuovo Cimento, 7 (1958), p. 287
[4] J. Exp. Theor. Phys., 3 (1957), p. 920
[5] J. Exp. Theor. Phys., 5 (1957), p. 101
[6] Theory of Interacting Fermi Systems, Benjamin, New York, 1961
[7] J. Phys. Lett., 41 (1980), p. L-95
[8] Quantum Physics in One Dimension, International Series of Monographs on Physics, vol. 121, Oxford University Press, Oxford, UK, 2004
[9] Bosonization and Strongly Correlated Systems, Cambridge University Press, Cambridge, UK, 1999
[10] One dimensional bosons: from condensed matter systems to ultracold gases, Rev. Mod. Phys., Volume 83 (2011), p. 1405
[11] J. Phys. C, 14 (1981), p. 2585
[12]
, Marcel Dekker, Inc. (1994), p. 405[13] Chem. Rev., 104 (2004), p. 5565
[14] (A. Lebed, ed.), The Physics of Organic Superconductors, Springer, 2007
[15] On-chain electrodynamics of metallic salts: observation of Tomonaga–Luttinger liquid response, Phys. Rev. B, Volume 58 (1998), p. 1261
[16] Physica B, 230–232 (1997), p. 975
[17] Phys. Rev. B, 74 (2006)
[18] Chem. Rev., 104 (2004), p. 5037
[19] Adv. Mater., 15 (2003), p. 1251
[20] Quantum phase transitions in quasi-one dimensional systems (L.D. Carr, ed.), Understanding Quantum Phase Transitions, CRC Press/Taylor & Francis, 2010, p. 291
[21] Phys. Rev. Lett., 70 (1993), p. 2004
[22] Phys. Rev. Lett., 82 (1999), p. 1317
[23] Phys. Rev. B, 6 (1997), p. 3907
[24] Phys. Rev. B, 57 (1997), p. 6342
[25] Hall effect and inter-chain magneto-optical properties of coupled Luttinger liquids, Phys. Rev. B, Volume 63 (2001) | arXiv
[26] J. Low Temp. Phys., 142 (2006), p. 315
[27] Phys. Rev. B, 75 (2007)
[28] Phys. Rev. Lett., 84 (2000), p. 2674
[29] Phys. Rev. Lett., 84 (2000), p. 2670
[30] Conduction anisotropy, Hall effect, and magnetoresistance of at high temperatures, Phys. Rev. B, Volume 67 (2003)
[31] Phys. Rev. B, 73 (2006)
[32] Some experimental tests of Tomonaga–Luttinger liquids, Int. J. Mod. Phys. B, Volume 26 (2012), p. 1244004 http://www.worldscientific.com/doi/abs/10.1142/S0217979212440043
[33] Many-body physics with ultracold gases, Rev. Mod. Phys., Volume 80 (2008), pp. 885-964 | DOI
[34] Colloquium: artificial gauge potentials for neutral atoms, Rev. Mod. Phys., Volume 83 (2011), pp. 1523-1543 | DOI
[35] Observation of chiral currents with ultracold atoms in bosonic ladders, Nat. Phys., Volume 10 (2014), p. 588
[36] Observation of chiral edge states with neutral fermions in synthetic Hall ribbons, 2015 | arXiv
[37] Chiral Luttinger liquids at the fractional quantum hall edge, Rev. Mod. Phys., Volume 75 (2003), p. 1449
[38] Colloquium: topological insulators, Rev. Mod. Phys., Volume 82 (2010), pp. 3045-3067 | DOI
[39] C. R. Phys., 14 (2013) no. 9–10
[40] Fields, Strings and Critical Phenomena (E. Brezin; J. Zinn-Justin, eds.), Elsevier Science, Amsterdam, 1988, p. 563
[41] Temperature dependence of the electron-spin-resonance spectrum of the chain-end modes in an antiferromagnetic chain, Phys. Rev. B, Volume 45 (1992), pp. 5299-5306 | DOI
[42] Effect of edges in Heisenberg antiferromagnetic chains, Phys. Rev. B, Volume 48 (1993), p. 913
[43] Phys. Rev., 58 (1940), pp. 1098-1113
[44] Prog. Theor. Phys., 16 (1956), p. 569
[45] Coupled ladders in a magnetic field, Phys. Rev. B, Volume 59 (1999), p. 11398
[46] Bose–Einstein condensation in magnetic insulators, Nat. Phys., Volume 4 (2008), p. 198
[47] Bose–Einstein condensation in quantum magnets, Rev. Mod. Phys., Volume 86 (2014), pp. 563-614 | DOI
[48] Spin ladders and quantum simulators for Tomonaga–Luttinger liquids, J. Phys. C, Volume 25 (2013)
[49] Quantum-critical spin dynamics in quasi-one-dimensional antiferromagnets, Phys. Rev. Lett., Volume 109 (2012) | DOI
[50] Controlling Luttinger liquid physics in spin ladders under a magnetic field, Phys. Rev. Lett., Volume 101 (2008) no. 13 | arXiv | DOI
[51] Thermodynamics of the spin Luttinger liquid in a model ladder material, Phys. Rev. Lett., Volume 101 (2008)
[52] Phys. Rev. B, 79 (2008)
[53] Phys. Rev. Lett., 102 (2009)
[54] Scaling of temporal correlations in an attractive Tomonaga–Luttinger spin liquid, Phys. Rev. B, Volume 91 (2015)
[55] Phys. Rev. B, 37 (1988), p. 325
[56] Phys. Rev. B, 40 (1989), p. 546
[57] Evidence of a magnetic Bose glass in from neutron diffraction, Phys. Rev. B, Volume 81 (2010) no. 6 | DOI
[58] Phys. Rev. B, 83 (2011)
[59] Bose glass in DTN, Nature, Volume 489 (2012), p. 379
[60] The density-matrix renormalization group in the age of matrix product states, Ann. Phys., Volume 326 (2011), p. 96
[61] Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B, Volume 48 (1993) no. 14, pp. 10345-10356 | DOI
[62] Phys. Rev. B, 63 (2001)
[63] Statics and dynamics of weakly coupled antiferromagnetic spin-1/2 ladders in a magnetic field, Phys. Rev. B, Volume 83 (2011) | DOI
[64] Symmetric and asymmetric excitations of a strong-leg quantum spin ladder, Phys. Rev. B, Volume 88 (2013) | DOI
[65] Phys. Rev., 130 (1963), p. 1605
[66] Phys. Rev. Lett., 20 (1968), p. 1445
[67] Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids, Phys. Rev. Lett., Volume 47 (1981), p. 1840
[68] Phys. Rev. Lett., 64 (1990), p. 2831
[69] One-particle dynamical correlations in the one-dimensional Bose gas, J. Stat. Mech. Theory Exp., Volume 2007 (2007)
[70] Universal theory of nonlinear Luttinger liquids, Science, Volume 323 (2009), p. 228
[71] One-dimensional quantum liquids: beyond the Luttinger liquid paradigm, Rev. Mod. Phys., Volume 84 (2012), pp. 1253-1306 | DOI
[72] Spin–charge separation and localization in one dimension, Science, Volume 308 (2005), p. 88
[73] Phys. Rev. Lett., 99 (2007)
[74] Phys. Rev. Lett., 92 (2004)
[75] Green's function for magnetically incoherent interacting electrons in one dimension, Phys. Rev. Lett., Volume 93 (2004)
[76] The spin-incoherent Luttinger liquid, Rev. Mod. Phys., Volume 79 (2007), p. 801
Cited by Sources:
Comments - Policy