[Surfaces d'oxyde isolantes et nanostructures]
Cet article décrit quelques particularités de la science des surfaces d'oxydes et des nanostructures, et propose un schéma conceptuel simple permettant de comprendre leur structure électronique, dans l'esprit des travaux de Jacques Friedel. Des résultats majeurs quant aux effets de non-stœchiométrie et de polarité sont presentés, à la fois pour les surfaces semi-infinies et les films ultra-fins, et des perspectives de recherche prometteuses pour un future proche sont esquissées.
This contribution describes some peculiarities of the science of oxide surfaces and nanostructures and proposes a simple conceptual scheme to understand their electronic structure, in the spirit of Jacques Friedel's work. Major results on the effects of non-stoichiometry and polarity are presented, for both semi-infinite surfaces and ultra-thin films, and promising lines of research for the near future are sketched.
Mots-clés : Oxydes, Surfaces, Nanostructures, Gap, Méthodes tight-binding, Films ultra-fins
Jacek Goniakowski 1, 2 ; Claudine Noguera 1, 2
@article{CRPHYS_2016__17_3-4_471_0, author = {Jacek Goniakowski and Claudine Noguera}, title = {Insulating oxide surfaces and nanostructures}, journal = {Comptes Rendus. Physique}, pages = {471--480}, publisher = {Elsevier}, volume = {17}, number = {3-4}, year = {2016}, doi = {10.1016/j.crhy.2015.12.007}, language = {en}, }
Jacek Goniakowski; Claudine Noguera. Insulating oxide surfaces and nanostructures. Comptes Rendus. Physique, Physique de la matière condensée au XXIe siècle: l’héritage de Jacques Friedel, Volume 17 (2016) no. 3-4, pp. 471-480. doi : 10.1016/j.crhy.2015.12.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.12.007/
[1] Physics and Chemistry at Oxide Surfaces, Cambridge University Press, Cambridge, 1996, 2005
[2] Dynamic Theory of Crystal Lattices, Oxford University Press, London, 1954
[3] Phys. Chem. Chem. Phys., 1 (1999), p. 253
[4] J. Cryst. Growth, 80 (1987), p. 441
[5] J. Mater. Chem., 19 (2009), p. 7807
[6] Chem. Geol., 225 (2006), p. 176
[7] Phys. Rev. B, 50 (1994), p. 11996
[8] J. Chem. Phys., 104 (1996), p. 159
[9] Phys. Rev. B, 73 (2006)
[10] Phys. Rev. Lett., 82 (1999), p. 4866
[11] J. Solid State Chem., 88 (1990), p. 8
[12] J. Chem. Phys., 140 (2014)
[13] J. Chem. Phys., 140 (2014) no. 18 (Special topics)
[14] J. Chem. Phys., 98 (1993), p. 1372
[15] J. Chem. Phys., 140 (2014) (and references therein)
[16] Phys. Rev. B, 4 (1971), pp. 2406-2412
[17] J. Phys. (Paris), 38 (1977), p. 697
[18] Adv. Catal., 45 (2000), p. 71
[19] Solid State Commun., 34 (1980), p. 807
[20] Bonding and Structure of Molecules and Solids, Oxford University Press, 1995
[21] J. Chem. Phys., 43 (1965), p. S129
[22] J. Chem. Phys., 23 (1955), p. 1833
[23] Chem. Rev., 91 (1991), p. 983
[24] Faraday Discuss., 114 (1999), p. 285
[25] Surf. Sci., 507–510 (2002), p. 245
[26] J. Phys. (Paris), 50 (1989), p. 2683
[27] Rev. Mod. Phys., 42 (1970), p. 317
[28] Phys. Rev. B, 91 (2015)
[29] Phys. Rev. B, 81 (2010)
[30] J. Phys. C, Solid State Phys., 12 (1979), p. 4977
[31] Surf. Sci., 307–309 (1994), p. 587
[32] Surf. Sci., 323 (1995), p. 129
[33] Surf. Sci., 126 (1983), p. 534
[34] Phys. Rev. B, 56 (1997), p. 4900
[35] Surf. Sci., 352–354 (1996), p. 755
[36] Phys. Rev. Lett., 59 (1999), p. 5178
[37] Nature, 469 (2011), p. 189
[38] Surf. Sci., 250 (1991), p. 71
[39] J. Am. Ceram. Soc., 77 (1994), p. 323
[40] Curr. Opin. Solid State Mater. Sci., 10 (2006), p. 153
[41] Phys. Rev. B, 69 (2004)
[42] Phys. Rev. B, 71 (2005)
[43] J. Phys. Condens. Matter, 21 (2009), p. 134008
[44] Phys. Rev. B, 79 (2009)
[45] Adv. Funct. Mater., 23 (2013), p. 75
[46] Chem. Soc. Rev., 37 (2008), p. 2224
[47] Angew. Chem., Int. Ed., 49 (2010), p. 4418
[48] J. Phys. Condens. Matter, 12 (2000), p. R367
[49] Rep. Prog. Phys., 71 (2008)
[50] Phys. Rev. Lett., 90 (2003)
[51] Nat. Mater., 9 (2010), p. 245
[52] Phys. Rev. B, 77 (2008)
[53] Chem. Rev., 113 (2013), p. 4073
[54] Phys. Rev. Lett., 98 (2007)
[55] Phys. Rev. Lett., 99 (2007)
[56] Phys. Rev. Lett., 93 (2004)
[57] Phys. Rev. B, 87 (2013)
[58] Phys. Rev. B, 91 (2015)
- Reactive Radical Etching of Quartz by Microwave Activated CH4/H2 Plasmas Promotes Gas Phase Nanoparticle Formation, The Journal of Physical Chemistry A, Volume 128 (2024) no. 50, p. 10884 | DOI:10.1021/acs.jpca.4c05787
- Atomic Layer Deposition of Alumina-Coated Thin-Film Cathodes for Lithium Microbatteries, International Journal of Molecular Sciences, Volume 24 (2023) no. 13, p. 11207 | DOI:10.3390/ijms241311207
- Diffusion mechanism of bound Schottky defect in magnesium oxide, Physical Review Materials, Volume 5 (2021) no. 3 | DOI:10.1103/physrevmaterials.5.033609
- Conversion of Plastic Waste into Supports for Nanostructured Heterogeneous Catalysts: Application in Environmental Remediation, Surfaces, Volume 5 (2021) no. 1, p. 35 | DOI:10.3390/surfaces5010002
- Atomic Origin of the Autocatalytic Reduction of Monoclinic CuO in a Hydrogen Atmosphere, The Journal of Physical Chemistry Letters, Volume 12 (2021) no. 39, p. 9547 | DOI:10.1021/acs.jpclett.1c02369
- Confinement effects in ultrathin ZnO polymorph films: Electronic and optical properties, Physical Review B, Volume 93 (2016) no. 19 | DOI:10.1103/physrevb.93.195435
- Atomic-Scale Structure and Stability of the Low-Index Surfaces of Pyrochlore Oxides, The Journal of Physical Chemistry C, Volume 120 (2016) no. 19, p. 10485 | DOI:10.1021/acs.jpcc.6b02847
Cité par 7 documents. Sources : Crossref
Commentaires - Politique