This contribution describes some peculiarities of the science of oxide surfaces and nanostructures and proposes a simple conceptual scheme to understand their electronic structure, in the spirit of Jacques Friedel's work. Major results on the effects of non-stoichiometry and polarity are presented, for both semi-infinite surfaces and ultra-thin films, and promising lines of research for the near future are sketched.
Cet article décrit quelques particularités de la science des surfaces d'oxydes et des nanostructures, et propose un schéma conceptuel simple permettant de comprendre leur structure électronique, dans l'esprit des travaux de Jacques Friedel. Des résultats majeurs quant aux effets de non-stœchiométrie et de polarité sont presentés, à la fois pour les surfaces semi-infinies et les films ultra-fins, et des perspectives de recherche prometteuses pour un future proche sont esquissées.
Mot clés : Oxydes, Surfaces, Nanostructures, Gap, Méthodes tight-binding, Films ultra-fins
Jacek Goniakowski 1, 2; Claudine Noguera 1, 2
@article{CRPHYS_2016__17_3-4_471_0, author = {Jacek Goniakowski and Claudine Noguera}, title = {Insulating oxide surfaces and nanostructures}, journal = {Comptes Rendus. Physique}, pages = {471--480}, publisher = {Elsevier}, volume = {17}, number = {3-4}, year = {2016}, doi = {10.1016/j.crhy.2015.12.007}, language = {en}, }
Jacek Goniakowski; Claudine Noguera. Insulating oxide surfaces and nanostructures. Comptes Rendus. Physique, Volume 17 (2016) no. 3-4, pp. 471-480. doi : 10.1016/j.crhy.2015.12.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.12.007/
[1] Physics and Chemistry at Oxide Surfaces, Cambridge University Press, Cambridge, 1996, 2005
[2] Dynamic Theory of Crystal Lattices, Oxford University Press, London, 1954
[3] Phys. Chem. Chem. Phys., 1 (1999), p. 253
[4] J. Cryst. Growth, 80 (1987), p. 441
[5] J. Mater. Chem., 19 (2009), p. 7807
[6] Chem. Geol., 225 (2006), p. 176
[7] Phys. Rev. B, 50 (1994), p. 11996
[8] J. Chem. Phys., 104 (1996), p. 159
[9] Phys. Rev. B, 73 (2006)
[10] Phys. Rev. Lett., 82 (1999), p. 4866
[11] J. Solid State Chem., 88 (1990), p. 8
[12] J. Chem. Phys., 140 (2014)
[13] J. Chem. Phys., 140 (2014) no. 18 (Special topics)
[14] J. Chem. Phys., 98 (1993), p. 1372
[15] J. Chem. Phys., 140 (2014) (and references therein)
[16] Phys. Rev. B, 4 (1971), pp. 2406-2412
[17] J. Phys. (Paris), 38 (1977), p. 697
[18] Adv. Catal., 45 (2000), p. 71
[19] Solid State Commun., 34 (1980), p. 807
[20] Bonding and Structure of Molecules and Solids, Oxford University Press, 1995
[21] J. Chem. Phys., 43 (1965), p. S129
[22] J. Chem. Phys., 23 (1955), p. 1833
[23] Chem. Rev., 91 (1991), p. 983
[24] Faraday Discuss., 114 (1999), p. 285
[25] Surf. Sci., 507–510 (2002), p. 245
[26] J. Phys. (Paris), 50 (1989), p. 2683
[27] Rev. Mod. Phys., 42 (1970), p. 317
[28] Phys. Rev. B, 91 (2015)
[29] Phys. Rev. B, 81 (2010)
[30] J. Phys. C, Solid State Phys., 12 (1979), p. 4977
[31] Surf. Sci., 307–309 (1994), p. 587
[32] Surf. Sci., 323 (1995), p. 129
[33] Surf. Sci., 126 (1983), p. 534
[34] Phys. Rev. B, 56 (1997), p. 4900
[35] Surf. Sci., 352–354 (1996), p. 755
[36] Phys. Rev. Lett., 59 (1999), p. 5178
[37] Nature, 469 (2011), p. 189
[38] Surf. Sci., 250 (1991), p. 71
[39] J. Am. Ceram. Soc., 77 (1994), p. 323
[40] Curr. Opin. Solid State Mater. Sci., 10 (2006), p. 153
[41] Phys. Rev. B, 69 (2004)
[42] Phys. Rev. B, 71 (2005)
[43] J. Phys. Condens. Matter, 21 (2009), p. 134008
[44] Phys. Rev. B, 79 (2009)
[45] Adv. Funct. Mater., 23 (2013), p. 75
[46] Chem. Soc. Rev., 37 (2008), p. 2224
[47] Angew. Chem., Int. Ed., 49 (2010), p. 4418
[48] J. Phys. Condens. Matter, 12 (2000), p. R367
[49] Rep. Prog. Phys., 71 (2008)
[50] Phys. Rev. Lett., 90 (2003)
[51] Nat. Mater., 9 (2010), p. 245
[52] Phys. Rev. B, 77 (2008)
[53] Chem. Rev., 113 (2013), p. 4073
[54] Phys. Rev. Lett., 98 (2007)
[55] Phys. Rev. Lett., 99 (2007)
[56] Phys. Rev. Lett., 93 (2004)
[57] Phys. Rev. B, 87 (2013)
[58] Phys. Rev. B, 91 (2015)
Cited by Sources:
Comments - Policy