After introducing the field of Highly Frustrated Magnetism through the quest for a quantum spin liquid in dimension higher than one, we focus on the emblematic case of the kagome network. From a theoretical point of view, the simple Heisenberg case for an antiferromagnetic kagome lattice decorated with quantum spins has been a long-standing problem, not solved yet. Experimental realizations have remained scarce for long until the discovery of herbertsmithite ZnCu3(OH)6Cl2 in 2005. This is one of the very few quantum kagome spin liquid candidates that triggered a burst of activity both on theory and experiment sides. We give a survey of theory outcomes on the “kagome” problem, review the experimental properties of that model candidate and shortly discuss them with respect to recent theoretical results.
Après avoir introduit la thématique du magnétisme fortement frustré par le biais de la recherche d'un état liquide de spin quantique au-delà de la dimension 1, nous discutons en détail le cas emblématique du réseau kagome. D'un point de vue théorique, le cas le plus simple de l'hamiltonien d'Heisenberg sur une telle géométrie décorée de spins quantiques en interaction antiferromagnétique est un problème ancien, non encore résolu. Les réalisations expérimentales sont restées rares jusqu'à la découverte de l'herbertsmithite ZnCu3(OH)6Cl2 en 2005. C'est l'une des seules réalisations expérimentales d'un liquide de spin quantique sur réseau kagome dont la découverte a engendré une intense activité à la fois théorique et expérimentale. Nous donnons un aperçu des résultats théoriques sur ce problème kagome, passons en revue les propriétés expérimentales de ce composé « modèle » et les discutons dans le cadre des résultats théoriques les plus récents.
Mot clés : Antiferromagnétisme quantique, Kagome, Liquide de spin
Philippe Mendels 1; Fabrice Bert 1
@article{CRPHYS_2016__17_3-4_455_0, author = {Philippe Mendels and Fabrice Bert}, title = {Quantum kagome frustrated antiferromagnets: {One} route to quantum spin liquids}, journal = {Comptes Rendus. Physique}, pages = {455--470}, publisher = {Elsevier}, volume = {17}, number = {3-4}, year = {2016}, doi = {10.1016/j.crhy.2015.12.001}, language = {en}, }
Philippe Mendels; Fabrice Bert. Quantum kagome frustrated antiferromagnets: One route to quantum spin liquids. Comptes Rendus. Physique, Volume 17 (2016) no. 3-4, pp. 455-470. doi : 10.1016/j.crhy.2015.12.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.12.001/
[1]
, Cambridge University Press, 1993 (For a review, see Spin Glasses)[2] Festkörperprobleme (J. Treusch, ed.), Advances in Solid State Physics, vol. 17, Springer, 1977, p. 55
[3] Commun. Phys., 2 (1977), p. 115
[4] Philos. Mag., 8 (1973), p. 153
[5] Reflets Phys., 37 (2014), p. 4
[6] Annu. Rev. Chem., 48 (1997), pp. 545-600
[7] Nature, 456 (2008), p. 898 (For example)
[8] Nat. Mater., 6 (2007) no. 13 (For example)
[9] et al. Science, 451 (2008), p. 42
[10] Introduction to Frustrated Magnetism, Springer Series in Solid-State Sciences, vol. 164, Springer, Berlin, 2011
[11] et al. Nat. Phys., 128 (1962), p. 2131
[12] J. Am. Chem. Soc., 127 (2005), p. 13462
[13] Nature, 464 (2010), pp. 199-208
[14] Science, 235 (1987) no. 1196
[15] Phys. Rev. B, 65 (1988), p. 189
[16] Phys. Rev. Lett., 76 (1996), p. 4424
[17] et al. Phys. Rev. B, 86 (2012)
[18] Handbook of Magnetic Materials, vol. 13 (K.H.J. Buschow, ed.), Elsevier Science, 2001, pp. 423-520
[19] Phys. Rev. Lett., 64 (1990), p. 2070
[20] et al. Phys. Rev. Lett., 73 (1994), p. 3306
[21] Introduction to Frustrated Magnetism (C. Lacroix; P. Mendels; F. Mila, eds.), Springer Series in Solid-State Sciences, vol. 164, Springer, Berlin, 2011
[22] Phys. Rev. B, 66 (2002)
[23] et al. J. Phys. Soc. Jpn., 70 (2001), p. 3377
[24] Phys. Rev. Lett., 95 (2005)
[25] J. Phys. Soc. Jpn., 81 (2011) (references therein)
[26] Phys. Rev. B, 109 (2012)
[27] Phys. Rev. B, 91 (2015)
[28] J. Phys. Soc. Jpn., 78 (2009)
[29] Nat. Chem., 3 (2011), pp. 801-806
[30] Phys. Rev. Lett., 110 (2013)
[31] Phys. Rev. Lett., 102 (2009)
[32] et al. Phys. Rev. Lett., 99 (2007)
[33] Phys. Rev. Lett., 115 (2015)
[34] et al. Sci. Rep., 4 (2014), p. 6818
[35] Introduction to Frustrated Magnetism (C. Lacroix; P. Mendels; F. Mila, eds.), Springer Series in Solid-State Sciences, vol. 164, Springer, Berlin, 2011
[36] Eur. Phys. J., 56 (1997), p. 2521-507
[37] Eur. Phys. Lett., 88 (2009), p. 27009
[38] Phys. Rev. B, 83 (2011)
[39] et al. Phys. Rev. B, 77 (2008)
[40] Phys. Rev. B, 77 (2008)
[41] Phys. Rev. B, 65 (2002)
[42] Phys. Rev. B, 98 (2007)
[43] Phys. Rev. B, 14 (2012)
[44] Phys. Rev. B, 101 (2008)
[45] Phys. Rev. Lett., 108 (2012)
[46] Science, 332 (2011), p. 1173
[47] et al. Phys. Rev. Lett., 109 (2012)
[48] Nat. Commun., 4 (2013), p. 2287
[49] Phys. Rev. Lett., 114 (2015)
[50] Contemp. Phys., 40 (1999), pp. 175-192
[51] Muon Spin Rotation, Relaxation, Resonance, Oxford University Press, 2010
[52] Mineral. Mag., 68 (2004), p. 527
[53] J. Phys. Soc. Jpn., 79 (2009)
[54] J. Phys. Conf. Ser., 320 (2011)
[55] Phys. Rev. Lett., 98 (2007)
[56] Phys. Rev. B, 76 (2007)
[57] Phys. Rev. Lett., 100 (2008)
[58] J. Am. Chem. Soc., 132 (2010), p. 16185
[59] Phys. Rev. Lett., 98 (2007)
[60] et al. J. Phys. Conf. Ser., 101 (2008)
[61] Phys. Rev. B, 81 (2010)
[62] Phys. Rev. B, 78 (2008)
[63] Phys. Rev. B, 81 (2010)
[64] Phys. Rev. B, 81 (2010)
[65] Phys. Rev. Lett., 108 (2012)
[66] et al. Phys. Rev. B, 88 (2013)
[67] Chem. Mater., 20 (2008), pp. 6897-6899
[68] Chem. Mater., 22 (2010), pp. 5774-5779
[69] Phys. Rev. Lett., 109 (2012)
[70] Phys. Rev. Lett., 100 (2008)
[71] J. Phys., 145 (2009)
[72] Phys. Rev. Lett., 100 (2008)
[73] Phys. Rev. B, 79 (2009)
[74] et al. Phys. Rev. B, 75 (2007)
[75] et al. Phys. Rev. Lett., 103 (2009)
[76] Nature, 492 (2012), p. 406
[77] Phys. Rev. B, 82 (2010)
[78] Phys. Rev. Lett., 111 (2013)
[79] Phys. Rev. Lett., 108 (2012)
[80] Phys. Rev. Lett., 107 (2011)
[81] Phys. Rev. B, 79 (2009)
[82] Science, 350 (2015), p. 655
Cited by Sources:
Comments - Policy