[Frustration dans les composés antiferromagnétiques quantiques sur réseau kagomé : une voie vers les liquides de spin]
Après avoir introduit la thématique du magnétisme fortement frustré par le biais de la recherche d'un état liquide de spin quantique au-delà de la dimension 1, nous discutons en détail le cas emblématique du réseau kagome. D'un point de vue théorique, le cas le plus simple de l'hamiltonien d'Heisenberg sur une telle géométrie décorée de spins quantiques en interaction antiferromagnétique est un problème ancien, non encore résolu. Les réalisations expérimentales sont restées rares jusqu'à la découverte de l'herbertsmithite ZnCu3(OH)6Cl2 en 2005. C'est l'une des seules réalisations expérimentales d'un liquide de spin quantique sur réseau kagome dont la découverte a engendré une intense activité à la fois théorique et expérimentale. Nous donnons un aperçu des résultats théoriques sur ce problème kagome, passons en revue les propriétés expérimentales de ce composé « modèle » et les discutons dans le cadre des résultats théoriques les plus récents.
After introducing the field of Highly Frustrated Magnetism through the quest for a quantum spin liquid in dimension higher than one, we focus on the emblematic case of the kagome network. From a theoretical point of view, the simple Heisenberg case for an antiferromagnetic kagome lattice decorated with quantum spins has been a long-standing problem, not solved yet. Experimental realizations have remained scarce for long until the discovery of herbertsmithite ZnCu3(OH)6Cl2 in 2005. This is one of the very few quantum kagome spin liquid candidates that triggered a burst of activity both on theory and experiment sides. We give a survey of theory outcomes on the “kagome” problem, review the experimental properties of that model candidate and shortly discuss them with respect to recent theoretical results.
Mots-clés : Antiferromagnétisme quantique, Kagome, Liquide de spin
Philippe Mendels 1 ; Fabrice Bert 1
@article{CRPHYS_2016__17_3-4_455_0, author = {Philippe Mendels and Fabrice Bert}, title = {Quantum kagome frustrated antiferromagnets: {One} route to quantum spin liquids}, journal = {Comptes Rendus. Physique}, pages = {455--470}, publisher = {Elsevier}, volume = {17}, number = {3-4}, year = {2016}, doi = {10.1016/j.crhy.2015.12.001}, language = {en}, }
Philippe Mendels; Fabrice Bert. Quantum kagome frustrated antiferromagnets: One route to quantum spin liquids. Comptes Rendus. Physique, Physique de la matière condensée au XXIe siècle: l’héritage de Jacques Friedel, Volume 17 (2016) no. 3-4, pp. 455-470. doi : 10.1016/j.crhy.2015.12.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.12.001/
[1]
, Cambridge University Press, 1993 (For a review, see Spin Glasses)[2] Festkörperprobleme (J. Treusch, ed.), Advances in Solid State Physics, vol. 17, Springer, 1977, p. 55
[3] Commun. Phys., 2 (1977), p. 115
[4] Philos. Mag., 8 (1973), p. 153
[5] Reflets Phys., 37 (2014), p. 4
[6] Annu. Rev. Chem., 48 (1997), pp. 545-600
[7] Nature, 456 (2008), p. 898 (For example)
[8] Nat. Mater., 6 (2007) no. 13 (For example)
[9] et al. Science, 451 (2008), p. 42
[10] Introduction to Frustrated Magnetism, Springer Series in Solid-State Sciences, vol. 164, Springer, Berlin, 2011
[11] et al. Nat. Phys., 128 (1962), p. 2131
[12] J. Am. Chem. Soc., 127 (2005), p. 13462
[13] Nature, 464 (2010), pp. 199-208
[14] Science, 235 (1987) no. 1196
[15] Phys. Rev. B, 65 (1988), p. 189
[16] Phys. Rev. Lett., 76 (1996), p. 4424
[17] et al. Phys. Rev. B, 86 (2012)
[18] Handbook of Magnetic Materials, vol. 13 (K.H.J. Buschow, ed.), Elsevier Science, 2001, pp. 423-520
[19] Phys. Rev. Lett., 64 (1990), p. 2070
[20] et al. Phys. Rev. Lett., 73 (1994), p. 3306
[21] Introduction to Frustrated Magnetism (C. Lacroix; P. Mendels; F. Mila, eds.), Springer Series in Solid-State Sciences, vol. 164, Springer, Berlin, 2011
[22] Phys. Rev. B, 66 (2002)
[23] et al. J. Phys. Soc. Jpn., 70 (2001), p. 3377
[24] Phys. Rev. Lett., 95 (2005)
[25] J. Phys. Soc. Jpn., 81 (2011) (references therein)
[26] Phys. Rev. B, 109 (2012)
[27] Phys. Rev. B, 91 (2015)
[28] J. Phys. Soc. Jpn., 78 (2009)
[29] Nat. Chem., 3 (2011), pp. 801-806
[30] Phys. Rev. Lett., 110 (2013)
[31] Phys. Rev. Lett., 102 (2009)
[32] et al. Phys. Rev. Lett., 99 (2007)
[33] Phys. Rev. Lett., 115 (2015)
[34] et al. Sci. Rep., 4 (2014), p. 6818
[35] Introduction to Frustrated Magnetism (C. Lacroix; P. Mendels; F. Mila, eds.), Springer Series in Solid-State Sciences, vol. 164, Springer, Berlin, 2011
[36] Eur. Phys. J., 56 (1997), p. 2521-507
[37] Eur. Phys. Lett., 88 (2009), p. 27009
[38] Phys. Rev. B, 83 (2011)
[39] et al. Phys. Rev. B, 77 (2008)
[40] Phys. Rev. B, 77 (2008)
[41] Phys. Rev. B, 65 (2002)
[42] Phys. Rev. B, 98 (2007)
[43] Phys. Rev. B, 14 (2012)
[44] Phys. Rev. B, 101 (2008)
[45] Phys. Rev. Lett., 108 (2012)
[46] Science, 332 (2011), p. 1173
[47] et al. Phys. Rev. Lett., 109 (2012)
[48] Nat. Commun., 4 (2013), p. 2287
[49] Phys. Rev. Lett., 114 (2015)
[50] Contemp. Phys., 40 (1999), pp. 175-192
[51] Muon Spin Rotation, Relaxation, Resonance, Oxford University Press, 2010
[52] Mineral. Mag., 68 (2004), p. 527
[53] J. Phys. Soc. Jpn., 79 (2009)
[54] J. Phys. Conf. Ser., 320 (2011)
[55] Phys. Rev. Lett., 98 (2007)
[56] Phys. Rev. B, 76 (2007)
[57] Phys. Rev. Lett., 100 (2008)
[58] J. Am. Chem. Soc., 132 (2010), p. 16185
[59] Phys. Rev. Lett., 98 (2007)
[60] et al. J. Phys. Conf. Ser., 101 (2008)
[61] Phys. Rev. B, 81 (2010)
[62] Phys. Rev. B, 78 (2008)
[63] Phys. Rev. B, 81 (2010)
[64] Phys. Rev. B, 81 (2010)
[65] Phys. Rev. Lett., 108 (2012)
[66] et al. Phys. Rev. B, 88 (2013)
[67] Chem. Mater., 20 (2008), pp. 6897-6899
[68] Chem. Mater., 22 (2010), pp. 5774-5779
[69] Phys. Rev. Lett., 109 (2012)
[70] Phys. Rev. Lett., 100 (2008)
[71] J. Phys., 145 (2009)
[72] Phys. Rev. Lett., 100 (2008)
[73] Phys. Rev. B, 79 (2009)
[74] et al. Phys. Rev. B, 75 (2007)
[75] et al. Phys. Rev. Lett., 103 (2009)
[76] Nature, 492 (2012), p. 406
[77] Phys. Rev. B, 82 (2010)
[78] Phys. Rev. Lett., 111 (2013)
[79] Phys. Rev. Lett., 108 (2012)
[80] Phys. Rev. Lett., 107 (2011)
[81] Phys. Rev. B, 79 (2009)
[82] Science, 350 (2015), p. 655
- Spin-crossover and high magnetic anisotropy in organometallic structures: W3C6O6 and Re3C6O6, Materials Today Communications, Volume 44 (2025), p. 112165 | DOI:10.1016/j.mtcomm.2025.112165
- Quantum spin liquid ground state in the rare-earth triangular antiferromagnet SmTa7O19, Physical Review B, Volume 111 (2025) no. 10 | DOI:10.1103/physrevb.111.104413
- NMR study of the local magnetic order in the kagome Weyl semimetal Co3Sn2S2, Physical Review B, Volume 111 (2025) no. 4 | DOI:10.1103/physrevb.111.045122
- Frustrated spin- 12 Heisenberg model on a kagome-strip chain: Dimerization and mapping to a spin-orbital Kugel-Khomskii model, Physical Review B, Volume 111 (2025) no. 4 | DOI:10.1103/physrevb.111.045115
- Phonon dynamics in quantum spin liquid and valence bond crystal states in the barlowite family of kagome magnets, Physical Review B, Volume 111 (2025) no. 9 | DOI:10.1103/physrevb.111.094406
- Structure and magnetic properties of the maple leaf antiferromagnet Ho3ScO6, Physical Review B, Volume 111 (2025) no. 9 | DOI:10.1103/physrevb.111.094439
- Magnetic properties of a ferrimagnetic transverse Ising system on the multilayer kagome-like lattice, Chemical Physics, Volume 583 (2024), p. 112328 | DOI:10.1016/j.chemphys.2024.112328
- Polarization Functions, Introduction to Muon Spin Spectroscopy, Volume 961 (2024), p. 85 | DOI:10.1007/978-3-031-44959-8_4
- Endless Dirac nodal lines and high mobility in kagome semimetal Ni3In2Se2 : a theoretical and experimental study, Journal of Physics: Condensed Matter, Volume 36 (2024) no. 44, p. 445601 | DOI:10.1088/1361-648x/ad6829
- Phase diagram of the quantum spin- 12 Heisenberg- Γ model on a frustrated zigzag chain, Physical Review B, Volume 110 (2024) no. 2 | DOI:10.1103/physrevb.110.024409
- Order-by-disorder charge density wave condensation at q=(13,13,13) in kagome metal ScV6Sn6, Physical Review Materials, Volume 8 (2024) no. 1 | DOI:10.1103/physrevmaterials.8.014006
- Modulations in Superconductors: Probes of Underlying Physics, Advanced Materials, Volume 35 (2023) no. 22 | DOI:10.1002/adma.202209457
- Double-Layer Kagome Metals Pt3Tl2 and Pt3In2, Crystals, Volume 13 (2023) no. 5, p. 833 | DOI:10.3390/cryst13050833
- Thermal features of Heisenberg antiferromagnets on edge- versus corner-sharing triangular-based lattices: a message from spin waves, Journal of Physics Communications, Volume 7 (2023) no. 6, p. 065004 | DOI:10.1088/2399-6528/acd320
- Compensation temperatures and hysteresis loops of the ferrimagnetic bilayer kagome lattice with RKKY interaction, Physica B: Condensed Matter, Volume 666 (2023), p. 415147 | DOI:10.1016/j.physb.2023.415147
- Heat conduction in herbertsmithite: Field dependence at the onset of the quantum spin liquid regime, Physical Review B, Volume 107 (2023) no. 5 | DOI:10.1103/physrevb.107.054434
- Schwinger boson study of the J1−J2−J3 kagome Heisenberg antiferromagnet with Dzyaloshinskii-Moriya interactions, Physical Review B, Volume 108 (2023) no. 14 | DOI:10.1103/physrevb.108.144406
- Proximate Dirac spin liquid in the honeycomb lattice J1−J3 XXZ model: Numerical study and application to cobaltates, Physical Review B, Volume 108 (2023) no. 17 | DOI:10.1103/physrevb.108.174422
- Frustration relief and reorientation transition in the kagomelike dolerophanite Cu2OSO4, Physical Review B, Volume 108 (2023) no. 22 | DOI:10.1103/physrevb.108.224410
- Artificial Atoms, Wigner Molecules, and an Emergent Kagome Lattice in Semiconductor Moiré Superlattices, Physical Review Letters, Volume 131 (2023) no. 24 | DOI:10.1103/physrevlett.131.246501
- Metal-organic kagome systems as candidates to study spin liquids, spin ice or the quantum anomalous Hall effect, Physical Review Materials, Volume 7 (2023) no. 7 | DOI:10.1103/physrevmaterials.7.074201
- Record-high mobility and extreme magnetoresistance on kagome-lattice in compensated semimetal Ni3In2S2, Science China Materials, Volume 66 (2023) no. 5, p. 2032 | DOI:10.1007/s40843-022-2348-9
- Organic quantum materials: A review, SmartMat, Volume 4 (2023) no. 4 | DOI:10.1002/smm2.1196
- Physics-Inspired Quantum Simulation of Resonating Valence Bond States─A Prototypical Template for a Spin-Liquid Ground State, The Journal of Physical Chemistry A, Volume 127 (2023) no. 41, p. 8751 | DOI:10.1021/acs.jpca.3c05172
- Multi‐Center Magnon Excitations Open the Entire Brillouin Zone to Terahertz Magnetometry of Quantum Magnets, Advanced Quantum Technologies, Volume 5 (2022) no. 6 | DOI:10.1002/qute.202200023
- Insight into ground-state spin arrangement and bipartite entanglement of the polymeric coordination compound [Dy2Cu2]n through the symmetric spin-1/2 Ising–Heisenberg orthogonal-dimer chain, Journal of Magnetism and Magnetic Materials, Volume 561 (2022), p. 169721 | DOI:10.1016/j.jmmm.2022.169721
- Topological aspects of antiferromagnets, Journal of Physics D: Applied Physics, Volume 55 (2022) no. 10, p. 103002 | DOI:10.1088/1361-6463/ac28fa
- Large Magnetocaloric Effect in the Kagome Ferromagnet Li9Cr3(P2O7)3(PO4)2, Physical Review Applied, Volume 18 (2022) no. 5 | DOI:10.1103/physrevapplied.18.054076
- Na5Co15.5Te6O36 : An S=12 stacked Ising kagome antiferromagnet with a partially disordered ground state, Physical Review B, Volume 105 (2022) no. 14 | DOI:10.1103/physrevb.105.144406
- Magnetic terahertz resonances above the Néel temperature in the frustrated kagome antiferromagnet averievite, Physical Review B, Volume 105 (2022) no. 6 | DOI:10.1103/physrevb.105.l060410
- Spin excitations in the quantum dipolar magnet Yb(BaBO3)3, Physical Review B, Volume 106 (2022) no. 1 | DOI:10.1103/physrevb.106.014409
- Magnetic structure of the swedenborgite compound CaBaMn2Fe2O7 derived by powder neutron diffraction and Mössbauer spectroscopy, Physical Review B, Volume 106 (2022) no. 14 | DOI:10.1103/physrevb.106.144428
- Schwinger boson theory of the J1, J2=J3 kagome antiferromagnet, Physical Review B, Volume 106 (2022) no. 14 | DOI:10.1103/physrevb.106.l140404
- Crystal-field states and defect levels in candidate quantum spin ice Ce2Hf2O7, Physical Review Materials, Volume 6 (2022) no. 4 | DOI:10.1103/physrevmaterials.6.044406
- Specific Heat of the Kagome Antiferromagnet Herbertsmithite in High Magnetic Fields, Physical Review X, Volume 12 (2022) no. 1 | DOI:10.1103/physrevx.12.011014
- Insight into Ground-State Spin Arrangement and Bipartite Entanglement of the Polymeric Coordination Compound [Dy2cu2]N Through the Symmetric Spin-1/2 Ising-Heisenberg Orthogonal-Dimer Chain, SSRN Electronic Journal (2022) | DOI:10.2139/ssrn.4066279
- Non-collinear magnetic structures in the magnetoelectric Swedenborgite CaBaFe4O7 derived by powder and single-crystal neutron diffraction, SciPost Physics Core, Volume 5 (2022) no. 1 | DOI:10.21468/scipostphyscore.5.1.007
- Linear magnetoelastic coupling and magnetic phase diagrams of the buckled-kagomé antiferromagnet
, Scientific Reports, Volume 12 (2022) no. 1 | DOI:10.1038/s41598-022-11368-5 - Quantum Spin Liquids from a Materials Perspective, Annual Review of Materials Research, Volume 51 (2021) no. 1, p. 495 | DOI:10.1146/annurev-matsci-080819-011453
- Magnetic Exchange Interactions, Handbook of Magnetism and Magnetic Materials (2021), p. 1 | DOI:10.1007/978-3-030-63101-7_2-1
- Magnetic Exchange Interactions, Handbook of Magnetism and Magnetic Materials (2021), p. 53 | DOI:10.1007/978-3-030-63210-6_2
- Rare-earth pyrocoboltates R2Co2O7 (R = Ce, Yb): Effective spin-12 antiferromagnetic insulators with strong geometrical frustration, Journal of Magnetism and Magnetic Materials, Volume 535 (2021), p. 168048 | DOI:10.1016/j.jmmm.2021.168048
- Magnetic behaviors of a ferrimagnetic decorated kagome-like lattice under an external magnetic field, Journal of Magnetism and Magnetic Materials, Volume 538 (2021), p. 168259 | DOI:10.1016/j.jmmm.2021.168259
- Q = 0 order in quantum kagome Heisenberg antiferromagnet, Journal of Physics: Condensed Matter, Volume 33 (2021) no. 14, p. 145802 | DOI:10.1088/1361-648x/abdc8e
- Magnetic field induced phase transitions of the triangular spin model, Physical Review B, Volume 103 (2021) no. 10 | DOI:10.1103/physrevb.103.104421
- Low-dimensional magnetism of BaCuTe2O6, Physical Review B, Volume 103 (2021) no. 13 | DOI:10.1103/physrevb.103.134410
- Anisotropic magnetic interactions in hexagonalAB-stacked kagome lattice structures: Application toMn3X(X=Ge,Sn,Ga) compounds, Physical Review B, Volume 103 (2021) no. 14 | DOI:10.1103/physrevb.103.144401
- Magnetic anisotropy and spin dynamics in the kagome magnet Fe4Si2Sn7O16 : NMR and magnetic susceptibility study on oriented powder, Physical Review B, Volume 103 (2021) no. 6 | DOI:10.1103/physrevb.103.064425
- Universal fluctuating regime in triangular chromate antiferromagnets, Physical Review B, Volume 104 (2021) no. 10 | DOI:10.1103/physrevb.104.104422
- Emergence of unconventional spin glass-like state in κ - (ET)2Cu[N(CN)2]Cl by introducing weak randomness, Physical Review B, Volume 104 (2021) no. 15 | DOI:10.1103/physrevb.104.155107
- The Hexagonal ↔ Orthorhombic Structural Phase Transition in Claringbullite, Cu4FCl(OH)6, The Canadian Mineralogist, Volume 59 (2021) no. 1, p. 265 | DOI:10.3749/canmin.2000041
- A europium kagome lattice in the solid solution Eu3−х Sr х Pt4Zn12 – first zinc representatives of the Gd3Ru4Al12 type, Zeitschrift für Kristallographie - Crystalline Materials, Volume 236 (2021) no. 8-10, p. 215 | DOI:10.1515/zkri-2021-2041
- Alkali Transition‐Metal Molybdates: A Stepwise Approach to Geometrically Frustrated Systems, Chemistry – A European Journal, Volume 26 (2020) no. 3, p. 597 | DOI:10.1002/chem.201904193
- Theoretical and experimental developments in quantum spin liquid in geometrically frustrated magnets: a review, Journal of Materials Science, Volume 55 (2020) no. 6, p. 2257 | DOI:10.1007/s10853-019-04128-w
- Gapless ground state in the archetypal quantum kagome antiferromagnet ZnCu3(OH)6Cl2, Nature Physics, Volume 16 (2020) no. 4, p. 469 | DOI:10.1038/s41567-020-0792-1
- Magnetic properties of decorated 2D kagome-like lattice, Physica A: Statistical Mechanics and its Applications, Volume 560 (2020), p. 125222 | DOI:10.1016/j.physa.2020.125222
- Spin order in the classical spin kagome antiferromagnet MgxMn4−x(OH)6Cl2, Physical Review B, Volume 101 (2020) no. 13 | DOI:10.1103/physrevb.101.134424
- Effect of perturbations on the kagome S=12 antiferromagnet at all temperatures, Physical Review B, Volume 101 (2020) no. 14 | DOI:10.1103/physrevb.101.140403
- Robustness of the spin liquid state with respect to magnetic dilution in the bilayer kagome material Ca10Cr7O28, Physical Review B, Volume 101 (2020) no. 18 | DOI:10.1103/physrevb.101.184416
- Pressure-induced tuning of quantum spin liquid state in ZnCu3(OH)6Cl2, Physical Review B, Volume 101 (2020) no. 21 | DOI:10.1103/physrevb.101.214402
- Spinon excitations in the quasi-one-dimensional S=12 chain compound Cs4CuSb2Cl12, Physical Review B, Volume 101 (2020) no. 23 | DOI:10.1103/physrevb.101.235107
- Ferrimagnetic 120∘magnetic structure inCu2OSO4, Physical Review B, Volume 102 (2020) no. 9 | DOI:10.1103/physrevb.102.094422
- Magnon Crystallization in the Kagome Lattice Antiferromagnet, Physical Review Letters, Volume 125 (2020) no. 11 | DOI:10.1103/physrevlett.125.117207
- Valence bond fluctuations in the Kitaev spin model, Physical Review Research, Volume 2 (2020) no. 1 | DOI:10.1103/physrevresearch.2.013005
- Quantum Spin Liquid in Geometrically Frustrated Magnets and the New State of Matter, Strongly Correlated Fermi Systems, Volume 283 (2020), p. 125 | DOI:10.1007/978-3-030-50359-8_8
- Integrating Structurally Perfect S = 1/2 Kagome-Lattice with Reduced Graphene Oxide, The Journal of Physical Chemistry C, Volume 124 (2020) no. 36, p. 19753 | DOI:10.1021/acs.jpcc.0c06564
- Materializing rival ground states in the barlowite family of kagome magnets: quantum spin liquid, spin ordered, and valence bond crystal states, npj Quantum Materials, Volume 5 (2020) no. 1 | DOI:10.1038/s41535-020-0222-8
- Observation of plaquette fluctuations in the spin-1/2 honeycomb lattice, npj Quantum Materials, Volume 5 (2020) no. 1 | DOI:10.1038/s41535-020-00287-1
- Magnetism study on a triangular lattice antiferromagnet Cu2(OH)3Br, Journal of Physics: Condensed Matter, Volume 31 (2019) no. 27, p. 275801 | DOI:10.1088/1361-648x/ab1623
- Emergent magnetic order and correlated disorder in formate metal-organic frameworks, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 377 (2019) no. 2149, p. 20190007 | DOI:10.1098/rsta.2019.0007
- Large easy-axis anisotropy in the one-dimensional magnet BaMo(PO4)2, Physical Review B, Volume 100 (2019) no. 21 | DOI:10.1103/physrevb.100.214427
- Field-induced pseudo-skyrmion phase in the antiferromagnetic kagome lattice, Physical Review B, Volume 100 (2019) no. 24 | DOI:10.1103/physrevb.100.245106
- Resonating quantum three-coloring wave functions for the kagome quantum antiferromagnet, Physical Review B, Volume 99 (2019) no. 10 | DOI:10.1103/physrevb.99.104433
- Evidence of low-energy singlet excited states in the spin- 12 polyhedral clusters Mo72V30 and W72V30 with strongly frustrated kagome networks, Physical Review B, Volume 99 (2019) no. 6 | DOI:10.1103/physrevb.99.064430
- Anisotropic-Exchange Magnets on a Triangular Lattice: Spin Waves, Accidental Degeneracies, and Dual Spin Liquids, Physical Review X, Volume 9 (2019) no. 2 | DOI:10.1103/physrevx.9.021017
- Electron-nuclear hyperfine coupling in quantum kagome antiferromagnets from first-principles calculation and a reflection of the defect effect, Science Bulletin, Volume 64 (2019) no. 21, p. 1584 | DOI:10.1016/j.scib.2019.08.028
- Spin liquid mediated RKKY interaction, Scientific Reports, Volume 9 (2019) no. 1 | DOI:10.1038/s41598-019-53842-7
- Quantum magnetism in minerals, Advances in Physics, Volume 67 (2018) no. 3, p. 149 | DOI:10.1080/00018732.2018.1571986
- Phase Control of Ferromagnetic Copper(II) Carbonate Coordination Polymers through Reagent Concentration, European Journal of Inorganic Chemistry, Volume 2018 (2018) no. 48, p. 5223 | DOI:10.1002/ejic.201801041
- Synthesis, structure and magnetism of the newS = 1 kagome magnet NH4Ni2.5V2O7(OH)2⋅H2O, Journal of Physics: Condensed Matter, Volume 30 (2018) no. 2, p. 025801 | DOI:10.1088/1361-648x/aa9d64
- Effect of Zn doping on the antiferromagnetism in kagomeCu4−xZnx(OH)6FBr, Physical Review B, Volume 98 (2018) no. 15 | DOI:10.1103/physrevb.98.155127
- Nuclear and magnetic structures of the frustrated quantum antiferromagnet barlowite,Cu4(OH)6FBr, Physical Review Materials, Volume 2 (2018) no. 11 | DOI:10.1103/physrevmaterials.2.111405
- Single-crystal growth of Cu4(OH)6BrF and universal behavior in quantum spin liquid candidates synthetic barlowite and herbertsmithite, Physical Review Materials, Volume 2 (2018) no. 4 | DOI:10.1103/physrevmaterials.2.044406
- Gapless chiral spin liquid from coupled chains on the kagome lattice, SciPost Physics, Volume 4 (2018) no. 1 | DOI:10.21468/scipostphys.4.1.004
- Magnetism of coupled spin tetrahedra in ilinskite-type KCu5O2(SeO3)2Cl3, Scientific Reports, Volume 8 (2018) no. 1 | DOI:10.1038/s41598-018-20350-z
- Magnetic resonance as a local probe for kagomé magnetism in Barlowite Cu4(OH)6FBr, Scientific Reports, Volume 8 (2018) no. 1 | DOI:10.1038/s41598-018-29080-8
- Spin liquid and infinitesimal-disorder-driven cluster spin glass in the kagome lattice, Journal of Physics: Condensed Matter, Volume 29 (2017) no. 16, p. 165801 | DOI:10.1088/1361-648x/aa6060
- S=12quantum critical spin ladders produced by orbital ordering inBa2CuTeO6, Physical Review B, Volume 95 (2017) no. 10 | DOI:10.1103/physrevb.95.104428
- Evidence for a spinon Fermi surface in the triangular S=1 quantum spin liquid Ba3NiSb2O9, Physical Review B, Volume 95 (2017) no. 6 | DOI:10.1103/physrevb.95.060402
- Theory of quantum kagome ice and vison zero modes, Physical Review B, Volume 95 (2017) no. 7 | DOI:10.1103/physrevb.95.075130
- Spin order in the Heisenberg kagome antiferromagnet MgFe3(OH)6Cl2, Physical Review B, Volume 96 (2017) no. 14 | DOI:10.1103/physrevb.96.144111
- Striped magnetic ground state of the kagome lattice in Fe4Si2Sn7O16, Physical Review B, Volume 96 (2017) no. 18 | DOI:10.1103/physrevb.96.180410
- Unification of bosonic and fermionic theories of spin liquids on the kagome lattice, Physical Review B, Volume 96 (2017) no. 20 | DOI:10.1103/physrevb.96.205150
- ChemInform Abstract: Quantum Kagome Frustrated Antiferromagnets: One Route to Quantum Spin Liquids, ChemInform, Volume 47 (2016) no. 32 | DOI:10.1002/chin.201632226
- Emergent order in the kagome Ising magnet Dy3Mg2Sb3O14, Nature Communications, Volume 7 (2016) no. 1 | DOI:10.1038/ncomms13842
- Competing magnetic orders and spin liquids in two- and three-dimensional kagome systems: Pseudofermion functional renormalization group perspective, Physical Review B, Volume 94 (2016) no. 23 | DOI:10.1103/physrevb.94.235138
- Colloquium : Herbertsmithite and the search for the quantum spin liquid, Reviews of Modern Physics, Volume 88 (2016) no. 4 | DOI:10.1103/revmodphys.88.041002
Cité par 97 documents. Sources : Crossref
Commentaires - Politique