[Structure des matériaux covalents : de la distorsion de Peierls aux matériaux à changement de phase]
La relation entre structure électronique et cohésion des matériaux a été un sujet d'étude permanent de Jacques Friedel et de son école. Il a développé des modèles simples, intuitifs qui se sont révélés des guides d'une grande valeur et par la suite un complément utile aux calculs ab initio.
Son approche locale de la liaison chimique s'applique à un vaste champ de systèmes, incluant les matériaux non cristallins et permis un langage commun avec les chimistes. Dans cet axe nous passons en revue quelques comportements fascinants des matériaux covalents, la plupart d'entre eux présentant un mécanisme d'instabilité de Peierls (brisure de symétrie), même les liquides et les amorphes, étonnamment. Nous analysons aussi l'effet de parame‘tres externes tels que la pression et la température. Dans un certain domaine de température, la distorsion de Peierls disparaît et une dilatation thermique négative est observée. Enfin, la distorsion de Peierls joue un rôle central dans les matériaux à changement de phase (PC materials), qui sont très prometteurs pour la réalisation de mémoires non volatiles.
The relation between electronic structure and cohesion of materials has been a permanent quest of Jacques Friedel and his school. He developed simple models that are of great value as guidelines in conjunction with ab initio calculations. His local approach of bonding has both the advantages of a large field of applications including non-crystalline materials and a common language with chemists. Along this line, we review some fascinating behaviors of covalent materials, most of them showing a Peierls (symmetry breaking) instability mechanism, even in liquid and amorphous materials. We analyze the effect of external parameters such as pressure and temperature. In some temperature ranges, the Peierls distortion disappears and a negative thermal expansion is observed. In addition, the Peierls distortion plays a central role in Phase-Change Materials, which are very promising non-volatile memories.
Mot clés : Covalence, Distorsion de Peierls, Brisure de symétrie, Expansion thermique, Matériaux à changement de phase
Jean-Pierre Gaspard 1, 2
@article{CRPHYS_2016__17_3-4_389_0, author = {Jean-Pierre Gaspard}, title = {Structure of covalently bonded materials: {From} the {Peierls} distortion to {Phase-Change} {Materials}}, journal = {Comptes Rendus. Physique}, pages = {389--405}, publisher = {Elsevier}, volume = {17}, number = {3-4}, year = {2016}, doi = {10.1016/j.crhy.2015.12.009}, language = {en}, }
TY - JOUR AU - Jean-Pierre Gaspard TI - Structure of covalently bonded materials: From the Peierls distortion to Phase-Change Materials JO - Comptes Rendus. Physique PY - 2016 SP - 389 EP - 405 VL - 17 IS - 3-4 PB - Elsevier DO - 10.1016/j.crhy.2015.12.009 LA - en ID - CRPHYS_2016__17_3-4_389_0 ER -
Jean-Pierre Gaspard. Structure of covalently bonded materials: From the Peierls distortion to Phase-Change Materials. Comptes Rendus. Physique, Volume 17 (2016) no. 3-4, pp. 389-405. doi : 10.1016/j.crhy.2015.12.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.12.009/
[1] J. Appl. Phys., 33 (1962), pp. 281-285
[2] J. Phys. (Paris), 34 (1973), pp. 115-121
[3] J. Phys. (Paris), 34 (1973), pp. 483-493
[4] Point Defects in Semiconductors in Theoretical Aspects, Springer Series in Solid-State Sciences, vol. 22, 1981
[5] Philos. Mag. B, 77 (1998), pp. 727-744 | DOI
[6] C. R. Physique, 17 (2016) no. 3–4, pp. 332-356 ( in this issue )
[7] C. R. Physique, 17 (2016) no. 3–4, pp. 276-290 ( in this issue )
[8] Rev. Mod. Phys., 60 (1988), pp. 601-628 | DOI
[9] Quantum Theory of Solids, Oxford Classic Texts in the Physical Sciences, vol. 23, Oxford University Press, Oxford, UK, 1955
[10] Proc. R. Soc. Lond., Ser. A, Mat., 147 (1934), pp. 396-417
[11] The Theory of the Properties of Metals and Alloys, Clarendon Press, 1936
[12] Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond, Courier Corporation, 2012
[13] Interatomic Potential and Structural Stability, Springer, 1993, pp. 133-142
[14] Chemical Bonding in Solids, Oxford University Press, 1995
[15] Adv. Phys., 16 (1967), pp. 393-400
[16] More Surprises in Theoretical Physics, Princeton Series in Physics, vol. 19, Princeton University Press, Princeton, NJ, USA, 1991
[17] Nuovo Cimento D, 12 (1990), pp. 649-655
[18] J. Phys. Condens. Matter, 25 (2013), p. 505102
[19] J. Chem. Phys., 141 (2014)
[20] Nat. Mater., 7 (2008), pp. 653-658 http://www.nature.com/nmat/journal/v7/n8/suppinfo/nmat2226_S1.html | DOI
[21] Sov. Phys. Crystallogr., 15 (1971), pp. 845-850
[22] J. Solid State Chem., 74 (1988), pp. 277-286
[23] Solid State Commun., 84 (1992), pp. 839-842 http://www.sciencedirect.com/science/article/pii/003810989290102F | DOI
[24] J. Phys. (Paris), 32 (1971), p. 73
[25] Phys. Rev. B, 53 (1996), p. 206
[26] Basic Aspects of the Quantum Theory of Solids: Order and Elementary Excitations, Cambridge University Press, 2010
[27] et al. Phys. Status Solidi A, 74 (1982), pp. 185-192
[28] Phys. Rev. Lett., 59 (1987), p. 661
[29] Phys. Rev. Lett., 85 (2000), pp. 1950-1953 | DOI
[30] Appl. Phys. Lett., 96 (2010) http://scitation.aip.org/content/aip/journal/apl/96/18/10.1063/1.3419932 | DOI
[31] Nano Lett., 8 (2008), pp. 271-275 (pMID:18092826) | DOI
[32] J. Exp. Theor. Phys., 110 (2010), pp. 121-132
[33] J. Phys. Condens. Matter, 17 (2005)
[34] et al. Phys. Rev. B, 86 (2012)
[35] Phys. Rev. B, 79 (2009)
[36] Phys. Rev. Lett., 103 (2009)
[37] Phys. Rev. B, 82 (2010)
[38] Phys. Rev. Lett., 21 (1968), p. 1450
[39] Adv. Funct. Mater., 25 (2015) no. 40, pp. 6343-6359 | DOI
[40] Nat. Commun., 6 (2015)
[41] J. Phys. C, Solid State Phys., 13 (1980), p. 4855
[42] J. Phys. C, Solid State Phys., 13 (1980), p. 4875
Cité par Sources :
Commentaires - Politique