Comptes Rendus
Condensed matter physics in the 21st century: The legacy of Jacques Friedel
Structure of covalently bonded materials: From the Peierls distortion to Phase-Change Materials
[Structure des matériaux covalents : de la distorsion de Peierls aux matériaux à changement de phase]
Comptes Rendus. Physique, Volume 17 (2016) no. 3-4, pp. 389-405.

La relation entre structure électronique et cohésion des matériaux a été un sujet d'étude permanent de Jacques Friedel et de son école. Il a développé des modèles simples, intuitifs qui se sont révélés des guides d'une grande valeur et par la suite un complément utile aux calculs ab initio.

Son approche locale de la liaison chimique s'applique à un vaste champ de systèmes, incluant les matériaux non cristallins et permis un langage commun avec les chimistes. Dans cet axe nous passons en revue quelques comportements fascinants des matériaux covalents, la plupart d'entre eux présentant un mécanisme d'instabilité de Peierls (brisure de symétrie), même les liquides et les amorphes, étonnamment. Nous analysons aussi l'effet de parame‘tres externes tels que la pression et la température. Dans un certain domaine de température, la distorsion de Peierls disparaît et une dilatation thermique négative est observée. Enfin, la distorsion de Peierls joue un rôle central dans les matériaux à changement de phase (PC materials), qui sont très prometteurs pour la réalisation de mémoires non volatiles.

The relation between electronic structure and cohesion of materials has been a permanent quest of Jacques Friedel and his school. He developed simple models that are of great value as guidelines in conjunction with ab initio calculations. His local approach of bonding has both the advantages of a large field of applications including non-crystalline materials and a common language with chemists. Along this line, we review some fascinating behaviors of covalent materials, most of them showing a Peierls (symmetry breaking) instability mechanism, even in liquid and amorphous materials. We analyze the effect of external parameters such as pressure and temperature. In some temperature ranges, the Peierls distortion disappears and a negative thermal expansion is observed. In addition, the Peierls distortion plays a central role in Phase-Change Materials, which are very promising non-volatile memories.

Publié le :
DOI : 10.1016/j.crhy.2015.12.009
Keywords: Covalency, Peierls distortion, Symmetry breaking, Thermal expansion, Phase-change materials
Mot clés : Covalence, Distorsion de Peierls, Brisure de symétrie, Expansion thermique, Matériaux à changement de phase
Jean-Pierre Gaspard 1, 2

1 University of Liège, B5, B-4000 Sart-Tilman, Belgium
2 Institut Laue-Langevin, 71, avenue des Martyrs, 38000 Grenoble, France
@article{CRPHYS_2016__17_3-4_389_0,
     author = {Jean-Pierre Gaspard},
     title = {Structure of covalently bonded materials: {From} the {Peierls} distortion to {Phase-Change} {Materials}},
     journal = {Comptes Rendus. Physique},
     pages = {389--405},
     publisher = {Elsevier},
     volume = {17},
     number = {3-4},
     year = {2016},
     doi = {10.1016/j.crhy.2015.12.009},
     language = {en},
}
TY  - JOUR
AU  - Jean-Pierre Gaspard
TI  - Structure of covalently bonded materials: From the Peierls distortion to Phase-Change Materials
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 389
EP  - 405
VL  - 17
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.12.009
LA  - en
ID  - CRPHYS_2016__17_3-4_389_0
ER  - 
%0 Journal Article
%A Jean-Pierre Gaspard
%T Structure of covalently bonded materials: From the Peierls distortion to Phase-Change Materials
%J Comptes Rendus. Physique
%D 2016
%P 389-405
%V 17
%N 3-4
%I Elsevier
%R 10.1016/j.crhy.2015.12.009
%G en
%F CRPHYS_2016__17_3-4_389_0
Jean-Pierre Gaspard. Structure of covalently bonded materials: From the Peierls distortion to Phase-Change Materials. Comptes Rendus. Physique, Volume 17 (2016) no. 3-4, pp. 389-405. doi : 10.1016/j.crhy.2015.12.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.12.009/

[1] G. Leman; J. Friedel J. Appl. Phys., 33 (1962), pp. 281-285

[2] J. Friedel; M. Lannoo J. Phys. (Paris), 34 (1973), pp. 115-121

[3] J. Friedel; M. Lannoo J. Phys. (Paris), 34 (1973), pp. 483-493

[4] M. Lannoo; J. Bourgoin Point Defects in Semiconductors in Theoretical Aspects, Springer Series in Solid-State Sciences, vol. 22, 1981

[5] J.-P. Gaspard; A. Pellegatti; F. Marinelli; C. Bichara Philos. Mag. B, 77 (1998), pp. 727-744 | DOI

[6] J.-P. Pouget C. R. Physique, 17 (2016) no. 3–4, pp. 332-356 ( in this issue )

[7] J. Villain; M. Lavagna; P. Bruno C. R. Physique, 17 (2016) no. 3–4, pp. 276-290 ( in this issue )

[8] R. Hoffmann Rev. Mod. Phys., 60 (1988), pp. 601-628 | DOI

[9] R.E. Peierls Quantum Theory of Solids, Oxford Classic Texts in the Physical Sciences, vol. 23, Oxford University Press, Oxford, UK, 1955

[10] H. Jones Proc. R. Soc. Lond., Ser. A, Mat., 147 (1934), pp. 396-417

[11] N.F. Mott; H. Jones The Theory of the Properties of Metals and Alloys, Clarendon Press, 1936

[12] W.A. Harrison Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond, Courier Corporation, 2012

[13] F. Ducastelle Interatomic Potential and Structural Stability, Springer, 1993, pp. 133-142

[14] J.K. Burdett Chemical Bonding in Solids, Oxford University Press, 1995

[15] F. Cyrot-Lackmann Adv. Phys., 16 (1967), pp. 393-400

[16] R.E. Peierls More Surprises in Theoretical Physics, Princeton Series in Physics, vol. 19, Princeton University Press, Princeton, NJ, USA, 1991

[17] J.-P. Gaspard; R. Bellissent; A. Menelle; C. Bergman; R. Ceolin Nuovo Cimento D, 12 (1990), pp. 649-655

[18] M. Mayo; E. Yahel; Y. Greenberg; G. Makov J. Phys. Condens. Matter, 25 (2013), p. 505102

[19] J. Akola; N. Atodiresei; J. Kalikka; J. Larrucea; R. Jones J. Chem. Phys., 141 (2014)

[20] K. Shportko; S. Kremers; M. Woda; D. Lencer; J. Robertson; M. Wuttig Nat. Mater., 7 (2008), pp. 653-658 http://www.nature.com/nmat/journal/v7/n8/suppinfo/nmat2226_S1.html | DOI

[21] R. Imamov; S. Semiletov Sov. Phys. Crystallogr., 15 (1971), pp. 845-850

[22] H.W. Shu; S. Jaulmes; J. Flahaut J. Solid State Chem., 74 (1988), pp. 277-286

[23] J.-P. Gaspard; R. Ceolin Solid State Commun., 84 (1992), pp. 839-842 http://www.sciencedirect.com/science/article/pii/003810989290102F | DOI

[24] B. Cabane; J. Friedel J. Phys. (Paris), 32 (1971), p. 73

[25] C. Bichara; J.-Y. Raty; J.-P. Gaspard Phys. Rev. B, 53 (1996), p. 206

[26] D. Khomskii Basic Aspects of the Quantum Theory of Solids: Order and Elementary Excitations, Cambridge University Press, 2010

[27] L. Khvostantsev; V. Sidorov; L. Shelimova et al. Phys. Status Solidi A, 74 (1982), pp. 185-192

[28] R. Bellissent; C. Bergman; R. Ceolin; J.-P. Gaspard Phys. Rev. Lett., 59 (1987), p. 661

[29] J.Y. Raty; V. Godlevsky; P. Ghosez; C. Bichara; J.-P. Gaspard; J.R. Chelikowsky Phys. Rev. Lett., 85 (2000), pp. 1950-1953 | DOI

[30] B. Aufray; A. Kara; S. Vizzini; H. Oughaddou; C. Léandri; B. Ealet; G. Le Lay Appl. Phys. Lett., 96 (2010) http://scitation.aip.org/content/aip/journal/apl/96/18/10.1063/1.3419932 | DOI

[31] P. De Padova; C. Quaresima; P. Perfetti; B. Olivieri; C. Leandri; B. Aufray; S. Vizzini; G. Le Lay Nano Lett., 8 (2008), pp. 271-275 (pMID:18092826) | DOI

[32] E. Sheka; L. Chernozatonskii J. Exp. Theor. Phys., 110 (2010), pp. 121-132

[33] G. Barrera; J. Bruno; T. Barron; N. Allan J. Phys. Condens. Matter, 17 (2005)

[34] M. Krbal; A.V. Kolobov; P. Fons; J. Tominaga; S. Elliott; J. Hegedus; A. Giussani; K. Perumal; R. Calarco; T. Matsunaga et al. Phys. Rev. B, 86 (2012)

[35] G. Zhao; Y. Wu Phys. Rev. B, 79 (2009)

[36] C. Otjacques; J.-Y. Raty; M.-V. Coulet; M. Johnson; H. Schober; C. Bichara; J.-P. Gaspard Phys. Rev. Lett., 103 (2009)

[37] C. Otjacques; J.-Y. Raty; F. Hippert; H. Schober; M. Johnson; R. Céolin; J.-P. Gaspard Phys. Rev. B, 82 (2010)

[38] S.R. Ovshinsky Phys. Rev. Lett., 21 (1968), p. 1450

[39] V.L. Deringer; R. Dronskowski; M. Wuttig Adv. Funct. Mater., 25 (2015) no. 40, pp. 6343-6359 | DOI

[40] J.Y. Raty; W. Zhang; J. Luckas; C. Chen; R. Mazzarello; C. Bichara; M. Wuttig Nat. Commun., 6 (2015)

[41] P. Littlewood J. Phys. C, Solid State Phys., 13 (1980), p. 4855

[42] P. Littlewood J. Phys. C, Solid State Phys., 13 (1980), p. 4875

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

The Peierls instability and charge density wave in one-dimensional electronic conductors

Jean-Paul Pouget

C. R. Phys (2016)


Screw dislocations in BCC transition metals: from ab initio modeling to yield criterion

Emmanuel Clouet; Baptiste Bienvenu; Lucile Dezerald; ...

C. R. Phys (2021)


Quasi one-dimensional organic conductors: from Fröhlich conductivity and Peierls insulating state to magnetically-mediated superconductivity, a retrospective

Denis Jerome; Claude Bourbonnais

C. R. Phys (2024)