Comptes Rendus
Condensed matter physics in the 21st century: The legacy of Jacques Friedel
Jacques Friedel and the physics of metals and alloys
[Jacques Friedel et la théorie des métaux et alliages]
Comptes Rendus. Physique, Volume 17 (2016) no. 3-4, pp. 276-290.

Cet article est une introduction à la théorie électronique des métaux. Il s'adresse aux étudiants et aux physiciens non spécialistes. On commence par décrire certaines conséquences simples de la statistique de Fermi–Dirac dans les métaux purs, comme la distorsion de Peierls, les anomalies de Kohn et la distorsion de Labbé–Friedel. On discute ensuite la physique des alliages dilués. L'analogie avec le problème des collisions nucléaires fut un point de départ fructueux, qui amena à considérer l'effet des impuretés comme un problème de diffusion, dans lequel apparaissent les déphasages de l'onde électronique diffusée. Friedel élabora ainsi une théorie de la résistivité des alliages, et établit une règle de somme qui relie les déphasages au niveau de Fermi à la charge de l'impureté. Cette règle de somme joua plus tard un rôle essentiel dans le cas d'électrons fortement corrélés, notamment dans l'effet Kondo. Une autre découverte importante fut celle des oscillations de Friedel, responsables par exemple de la formation de structures magnétiques incommensurables. On montre comment elles peuvent être déduites de diverses méthodes : de la théorie des collisions, de la théorie des perturbations, d'approximations self-consistentes ou de la méthode des fonctions de Green. Si la théorie des collisions ne tient pas compte de la structure électronique, et par conséquent de la structure de bandes, ces effets peuvent facilement être inclus dans d'autres théories, par exemple en faisant appel à l'approximation des liaisons fortes.

This is an introduction to the theoretical physics of metals for students and physicists from other specialities. Certain simple consequences of the Fermi statistics in pure metals are first addressed, namely the Peierls distortion, Kohn anomalies and the Labbé–Friedel distortion. Then the physics of dilute alloys is discussed. The analogy with nuclear collisions was a fruitful starting point, which suggested one should analyze the effects of impurities in terms of a scattering problem with the introduction of phase shifts. Starting from these concepts, Friedel derived a theory of the resistivity of alloys, and a celebrated sum rule relating the phase shifts at the Fermi level to the number of electrons in the impurity, which turned out to play a prominent role later in the context of correlated impurities, as for instance in the Kondo effect. Friedel oscillations are also an important result, related to incommensurate magnetic structures. It is shown how they can be derived in various ways: from collision theory, perturbation theory, self-consistent approximations and Green's function methods. While collision theory does not permit to take the crystal structure into account, which is responsible for electronic bands, those effects can be included in other descriptions, using for instance the tight binding approximation.

Publié le :
DOI : 10.1016/j.crhy.2015.12.010
Keywords: Electrons in metals, Screening, Friedel oscillations, Kohn anomaly, Kondo effect, Tight binding approximation
Mot clés : Electrons dans les métaux, Effet d'écran, Oscillations de Friedel, Anomalies de Kohn, Effet Kondo, Approximation des liaisons fortes

Jacques Villain 1 ; Mireille Lavagna 2, 3 ; Patrick Bruno 4

1 Theory group, Institut Laue-Langevin, 38054 Grenoble cedex 9, France
2 Université Grenoble Alpes, INAC–SPSMS, 38000 Grenoble, France
3 CEA, INAC–SPSMS, 38000 Grenoble, France
4 Theory group, European Synchrotron Radiation Facility, 38054 Grenoble cedex 9, France
@article{CRPHYS_2016__17_3-4_276_0,
     author = {Jacques Villain and Mireille Lavagna and Patrick Bruno},
     title = {Jacques {Friedel} and the physics of metals and alloys},
     journal = {Comptes Rendus. Physique},
     pages = {276--290},
     publisher = {Elsevier},
     volume = {17},
     number = {3-4},
     year = {2016},
     doi = {10.1016/j.crhy.2015.12.010},
     language = {en},
}
TY  - JOUR
AU  - Jacques Villain
AU  - Mireille Lavagna
AU  - Patrick Bruno
TI  - Jacques Friedel and the physics of metals and alloys
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 276
EP  - 290
VL  - 17
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.12.010
LA  - en
ID  - CRPHYS_2016__17_3-4_276_0
ER  - 
%0 Journal Article
%A Jacques Villain
%A Mireille Lavagna
%A Patrick Bruno
%T Jacques Friedel and the physics of metals and alloys
%J Comptes Rendus. Physique
%D 2016
%P 276-290
%V 17
%N 3-4
%I Elsevier
%R 10.1016/j.crhy.2015.12.010
%G en
%F CRPHYS_2016__17_3-4_276_0
Jacques Villain; Mireille Lavagna; Patrick Bruno. Jacques Friedel and the physics of metals and alloys. Comptes Rendus. Physique, Volume 17 (2016) no. 3-4, pp. 276-290. doi : 10.1016/j.crhy.2015.12.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.12.010/

[1] H. Jahn; E. Teller Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy, Proc. R. Soc. Lond. A, Volume 161 (1937), p. 220

[2] I.B. Bersuker The Jahn–Teller Effect, Cambridge University Press, 2006

[3] M. Héritier Physique de la Matière Condensée, EDP Sciences, 2013

[4] J.P. Pouget The Peierls instability and charge density wave in one-dimensional electronic conductors, C. R. Physique, Volume 17 (2016) no. 3–4, pp. 332-356 ( in this issue )

[5] J.P. Gaspard Structure of covalently bonded materials: from the Peierls distortion to Phase Change-Materials, C. R. Physique, Volume 17 (2016) no. 3–4, pp. 389-405 ( in this issue )

[6] W. Kohn; E.J. Woll; W. Kohn Images of the Fermi surface in phonon spectra of metals, Phys. Rev., Volume 2 (1959), p. 393

[7] D.A. Stewart Ab initio investigation of phonon dispersion and anomalies in palladium, N. J. Phys., Volume 10 (2008)

[8] J. Labbé; J. Friedel Stabilité des modes de distorsion périodiques d'une chaine linéaire d'atomes de transition dans une structure cristalline du type V3Si, J. Phys., Volume 27 (1966), p. 708

[9] N.F. Mott; H. Jones The Theory of the Properties of Metals and Alloys, Clarendon Press, Oxford, UK, 1936

[10] A. Georges The beauty of impurities: two revivals of Friedel's virtual bound-state concept, C. R. Physique, Volume 17 (2016) no. 3–4, pp. 430-446 ( in this issue )

[11] L.I. Schiff Quantum Mechanics, McGraw–Hill, 1949

[12] P. de Faget de Castelnau; J. Friedel Etude de la résistivité et du pouvoir thermoélectrique des impuretés dissoutes dans les métaux nobles, J. Phys. Radium, Volume 17 (1956), p. 27

[13] J. Friedel On some electrical and magnetic properties of metallic solid solutions, Can. J. Phys., Volume 34 (1956), p. 1190

[14] J. Friedel The distribution of electrons round impurities in monovalent metals, Philos. Mag., Volume 43 (1952), p. 153

[15] Ph. Nozières A “Fermi liquid” description of the Kondo problem at low temperatures, J. Low Temp. Phys., Volume 17 (1974), p. 31

[16] P. Debye; E. Hückel Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen, Phys. Z., Volume 24 (1923), p. 185

[17] L.H. Thomas The calculation of atomic fields, Math. Proc. Camb. Philos. Soc., Volume 23 (1927), p. 542

[18] E. Fermi Un metodo statistico per la determinazione di alcune priorieta dell'atomo, Rend. Accad. Naz. Lincei, Volume 6 (1927), p. 602

[19] P. Hohenberg; W. Kohn Inhomogeneous electron gas, Phys. Rev., Volume 136 (1964), p. 864

[20] E. Daniel How the Friedel oscillations entered the physics of metallic alloys, C. R. Physique, Volume 17 (2016) no. 3–4, pp. 291-293 ( in this issue )

[21] P. Mallet; I. Brihuega; V. Cherkez; J.M. Gómez-Rodríguez; J.-Y. Veuillen Friedel oscillations in graphene-based systems probed by Scanning Tunneling Microscopy, C. R. Physique, Volume 17 (2016) no. 3–4, pp. 294-301 ( in this issue )

[22] C. Bena Friedel oscillations: decoding the hidden physics, C. R. Physique, Volume 17 (2016) no. 3–4, pp. 302-321 ( in this issue )

[23] A. Blandin; J. Friedel Effets quadrupolaires dans la résonance magnétique des alliages dilués, J. Phys. Radium, Volume 21 (1960), p. 689

[24] E. Daniel Effet des impuretés sur la densité électronique des métaux, J. Phys. Radium, Volume 20 (1959), p. 769 and 849. In these articles, formulae (5) and (6) are written differently, because of an unusual definition of Legendre polynomial, which differ by a factor (2+1)/2 from the usual definition

[25] V.S. Stepanyuk; A.N. Baranov; D.V. Tsivlin; W. Hergert; P. Bruno; N. Knorr; M.A. Schneider; K. Kern Quantum interference and long-range adsorbate–adsorbate interactions, Phys. Rev. B, Volume 68 (2003)

[26] M.A. Ruderman; C. Kittel Indirect exchange coupling of nuclear magnetic moments by conduction electrons, Phys. Rev., Volume 96 (1954), p. 99

[27] T. Kasuya A theory of metallic ferro- and antiferromagnetism on Zener's model, Prog. Theor. Phys., Volume 16 (1956), p. 45

[28] K. Yosida Magnetic properties of Cu–Mn alloys, Phys. Rev., Volume 106 (1957), p. 893

[29] K. Binder; A.P. Young Spin glasses: experimental facts, theoretical concepts, and open questions, Rev. Mod. Phys., Volume 58 (1986), p. 801

[30] C. Barreteau; D. Spanjaard; M.C. Desjonquères An efficient magnetic tight-binding method for transition metals and alloys, C. R. Physique, Volume 17 (2016) no. 3–4, pp. 406-429 ( in this issue )

[31] J. Goniakowski; C. Noguera Insulating oxide surfaces and nanostructures, C. R. Physique, Volume 17 (2016) no. 3–4, pp. 471-480 ( in this issue )

[32] J.M. Ziman Principles of the Theory of Solids, Cambridge University Press, 1964

[33] W.A. Harrison Solid State Theory, Dover, 1980

[34] A. Blandin Effets à grande distance dans la structure électronique des impuretés dans les métaux, J. Phys. Radium, Volume 21 (1961), p. 507

[35] L.M. Roth, Harvard University, 1957 (Thesis)

[36] L.M. Roth; H.J. Zeiger; T.A. Kaplan Generalization of the Ruderman–Kittel–Kasuya–Yosida interaction for nonspherical Fermi surfaces, Phys. Rev., Volume 149 (1966), p. 519

[37] F. Gautier Influence de la forme de la surface de Fermi sur la distribution électronique autour d'une impureté dissoute dans le cuivre, J. Phys. Radium, Volume 23 (1962), p. 105

[38] P. Bruno; C. Chappert Ruderman–Kittel theory of oscillatory interlayer exchange coupling, Phys. Rev. B, Volume 46 (1992), p. 261

[39] P.W. Anderson Localized magnetic states in metals, Phys. Rev., Volume 124 (1961), p. 41

[40] A. Georges; G. Kotliar; W. Krauth; M.J. Rozenberg Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys., Volume 68 (1996), p. 13 (and references within)

[41] A. Hewson The Kondo Problem to Heavy Fermions, Cambridge University Press, 1993 (and references within)

[42] L.I. Glazman; M.E. Raikh Resonant Kondo transparency of a barrier with quasilocal impurity states, JETP Lett., Volume 47 (1988), p. 452

[43] T.K. Ng; P.A. Lee On-site Coulomb repulsion and resonant tunneling, Phys. Rev. Lett., Volume 61 (1988), p. 1768

[44] D. Goldhaber-Gordon; H. Shtrikman; D. Mahalu; D. Abusch-Magder; U. Meirav; M.A. Kastner Kondo effect in a single-electron transistor, Nature, Volume 391 (1998), p. 156

[45] S.M. Cronenwett; T.H. Oosterkamp; L.P. Kouwenhoven A tunable Kondo effect in quantum dots, Science, Volume 281 (1998), p. 540

[46] D.C. Langreth Friedel sum rule for Anderson's model of localized impurity states, Phys. Rev., Volume 150 (1966), p. 516

[47] J.R. Schrieffer; P.A. Wolff Relation between the Anderson and Kondo Hamiltonians, Phys. Rev., Volume 149 (1966), p. 491

[48] J. Kondo Resistance minimum in dilute magnetic alloys, Prog. Theor. Phys., Volume 32 (1964), p. 37

[49] K.G. Wilson The renormalization group: critical phenomena and the Kondo problem, Rev. Mod. Phys., Volume 47 (1975), p. 773

[50] P.W. Anderson A poor man's derivation of scaling laws for the Kondo problem, J. Phys. C, Volume 3 (1970), p. 2436

[51] C. Mora; C.P. Moca; J. von Delft; G. Zaránd Fermi liquid theory for the single-impurity Anderson model, Phys. Rev. B, Volume 92 (2015)

[52] K. Yosida; K. Yamada Perturbation expansion for the Anderson Hamiltonian, Prog. Theor. Phys., Volume 53 (1975), p. 1286

[53] A.C. Hewson Renormalized perturbation expansions and Fermi liquid theory, Phys. Rev. Lett., Volume 70 (1993), p. 4007

Cité par Sources :

Commentaires - Politique