This is an introduction to the theoretical physics of metals for students and physicists from other specialities. Certain simple consequences of the Fermi statistics in pure metals are first addressed, namely the Peierls distortion, Kohn anomalies and the Labbé–Friedel distortion. Then the physics of dilute alloys is discussed. The analogy with nuclear collisions was a fruitful starting point, which suggested one should analyze the effects of impurities in terms of a scattering problem with the introduction of phase shifts. Starting from these concepts, Friedel derived a theory of the resistivity of alloys, and a celebrated sum rule relating the phase shifts at the Fermi level to the number of electrons in the impurity, which turned out to play a prominent role later in the context of correlated impurities, as for instance in the Kondo effect. Friedel oscillations are also an important result, related to incommensurate magnetic structures. It is shown how they can be derived in various ways: from collision theory, perturbation theory, self-consistent approximations and Green's function methods. While collision theory does not permit to take the crystal structure into account, which is responsible for electronic bands, those effects can be included in other descriptions, using for instance the tight binding approximation.
Cet article est une introduction à la théorie électronique des métaux. Il s'adresse aux étudiants et aux physiciens non spécialistes. On commence par décrire certaines conséquences simples de la statistique de Fermi–Dirac dans les métaux purs, comme la distorsion de Peierls, les anomalies de Kohn et la distorsion de Labbé–Friedel. On discute ensuite la physique des alliages dilués. L'analogie avec le problème des collisions nucléaires fut un point de départ fructueux, qui amena à considérer l'effet des impuretés comme un problème de diffusion, dans lequel apparaissent les déphasages de l'onde électronique diffusée. Friedel élabora ainsi une théorie de la résistivité des alliages, et établit une règle de somme qui relie les déphasages au niveau de Fermi à la charge de l'impureté. Cette règle de somme joua plus tard un rôle essentiel dans le cas d'électrons fortement corrélés, notamment dans l'effet Kondo. Une autre découverte importante fut celle des oscillations de Friedel, responsables par exemple de la formation de structures magnétiques incommensurables. On montre comment elles peuvent être déduites de diverses méthodes : de la théorie des collisions, de la théorie des perturbations, d'approximations self-consistentes ou de la méthode des fonctions de Green. Si la théorie des collisions ne tient pas compte de la structure électronique, et par conséquent de la structure de bandes, ces effets peuvent facilement être inclus dans d'autres théories, par exemple en faisant appel à l'approximation des liaisons fortes.
Mot clés : Electrons dans les métaux, Effet d'écran, Oscillations de Friedel, Anomalies de Kohn, Effet Kondo, Approximation des liaisons fortes
Jacques Villain 1; Mireille Lavagna 2, 3; Patrick Bruno 4
@article{CRPHYS_2016__17_3-4_276_0, author = {Jacques Villain and Mireille Lavagna and Patrick Bruno}, title = {Jacques {Friedel} and the physics of metals and alloys}, journal = {Comptes Rendus. Physique}, pages = {276--290}, publisher = {Elsevier}, volume = {17}, number = {3-4}, year = {2016}, doi = {10.1016/j.crhy.2015.12.010}, language = {en}, }
Jacques Villain; Mireille Lavagna; Patrick Bruno. Jacques Friedel and the physics of metals and alloys. Comptes Rendus. Physique, Volume 17 (2016) no. 3-4, pp. 276-290. doi : 10.1016/j.crhy.2015.12.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.12.010/
[1] Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy, Proc. R. Soc. Lond. A, Volume 161 (1937), p. 220
[2] The Jahn–Teller Effect, Cambridge University Press, 2006
[3] Physique de la Matière Condensée, EDP Sciences, 2013
[4] The Peierls instability and charge density wave in one-dimensional electronic conductors, C. R. Physique, Volume 17 (2016) no. 3–4, pp. 332-356 ( in this issue )
[5] Structure of covalently bonded materials: from the Peierls distortion to Phase Change-Materials, C. R. Physique, Volume 17 (2016) no. 3–4, pp. 389-405 ( in this issue )
[6] Images of the Fermi surface in phonon spectra of metals, Phys. Rev., Volume 2 (1959), p. 393
[7] Ab initio investigation of phonon dispersion and anomalies in palladium, N. J. Phys., Volume 10 (2008)
[8] Stabilité des modes de distorsion périodiques d'une chaine linéaire d'atomes de transition dans une structure cristalline du type V3Si, J. Phys., Volume 27 (1966), p. 708
[9] The Theory of the Properties of Metals and Alloys, Clarendon Press, Oxford, UK, 1936
[10] The beauty of impurities: two revivals of Friedel's virtual bound-state concept, C. R. Physique, Volume 17 (2016) no. 3–4, pp. 430-446 ( in this issue )
[11] Quantum Mechanics, McGraw–Hill, 1949
[12] Etude de la résistivité et du pouvoir thermoélectrique des impuretés dissoutes dans les métaux nobles, J. Phys. Radium, Volume 17 (1956), p. 27
[13] On some electrical and magnetic properties of metallic solid solutions, Can. J. Phys., Volume 34 (1956), p. 1190
[14] The distribution of electrons round impurities in monovalent metals, Philos. Mag., Volume 43 (1952), p. 153
[15] A “Fermi liquid” description of the Kondo problem at low temperatures, J. Low Temp. Phys., Volume 17 (1974), p. 31
[16] Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen, Phys. Z., Volume 24 (1923), p. 185
[17] The calculation of atomic fields, Math. Proc. Camb. Philos. Soc., Volume 23 (1927), p. 542
[18] Un metodo statistico per la determinazione di alcune priorieta dell'atomo, Rend. Accad. Naz. Lincei, Volume 6 (1927), p. 602
[19] Inhomogeneous electron gas, Phys. Rev., Volume 136 (1964), p. 864
[20] How the Friedel oscillations entered the physics of metallic alloys, C. R. Physique, Volume 17 (2016) no. 3–4, pp. 291-293 ( in this issue )
[21] Friedel oscillations in graphene-based systems probed by Scanning Tunneling Microscopy, C. R. Physique, Volume 17 (2016) no. 3–4, pp. 294-301 ( in this issue )
[22] Friedel oscillations: decoding the hidden physics, C. R. Physique, Volume 17 (2016) no. 3–4, pp. 302-321 ( in this issue )
[23] Effets quadrupolaires dans la résonance magnétique des alliages dilués, J. Phys. Radium, Volume 21 (1960), p. 689
[24] Effet des impuretés sur la densité électronique des métaux, J. Phys. Radium, Volume 20 (1959), p. 769 and 849. In these articles, formulae (5) and (6) are written differently, because of an unusual definition of Legendre polynomial, which differ by a factor from the usual definition
[25] Quantum interference and long-range adsorbate–adsorbate interactions, Phys. Rev. B, Volume 68 (2003)
[26] Indirect exchange coupling of nuclear magnetic moments by conduction electrons, Phys. Rev., Volume 96 (1954), p. 99
[27] A theory of metallic ferro- and antiferromagnetism on Zener's model, Prog. Theor. Phys., Volume 16 (1956), p. 45
[28] Magnetic properties of Cu–Mn alloys, Phys. Rev., Volume 106 (1957), p. 893
[29] Spin glasses: experimental facts, theoretical concepts, and open questions, Rev. Mod. Phys., Volume 58 (1986), p. 801
[30] An efficient magnetic tight-binding method for transition metals and alloys, C. R. Physique, Volume 17 (2016) no. 3–4, pp. 406-429 ( in this issue )
[31] Insulating oxide surfaces and nanostructures, C. R. Physique, Volume 17 (2016) no. 3–4, pp. 471-480 ( in this issue )
[32] Principles of the Theory of Solids, Cambridge University Press, 1964
[33] Solid State Theory, Dover, 1980
[34] Effets à grande distance dans la structure électronique des impuretés dans les métaux, J. Phys. Radium, Volume 21 (1961), p. 507
[35]
, Harvard University, 1957 (Thesis)[36] Generalization of the Ruderman–Kittel–Kasuya–Yosida interaction for nonspherical Fermi surfaces, Phys. Rev., Volume 149 (1966), p. 519
[37] Influence de la forme de la surface de Fermi sur la distribution électronique autour d'une impureté dissoute dans le cuivre, J. Phys. Radium, Volume 23 (1962), p. 105
[38] Ruderman–Kittel theory of oscillatory interlayer exchange coupling, Phys. Rev. B, Volume 46 (1992), p. 261
[39] Localized magnetic states in metals, Phys. Rev., Volume 124 (1961), p. 41
[40] Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys., Volume 68 (1996), p. 13 (and references within)
[41] The Kondo Problem to Heavy Fermions, Cambridge University Press, 1993 (and references within)
[42] Resonant Kondo transparency of a barrier with quasilocal impurity states, JETP Lett., Volume 47 (1988), p. 452
[43] On-site Coulomb repulsion and resonant tunneling, Phys. Rev. Lett., Volume 61 (1988), p. 1768
[44] Kondo effect in a single-electron transistor, Nature, Volume 391 (1998), p. 156
[45] A tunable Kondo effect in quantum dots, Science, Volume 281 (1998), p. 540
[46] Friedel sum rule for Anderson's model of localized impurity states, Phys. Rev., Volume 150 (1966), p. 516
[47] Relation between the Anderson and Kondo Hamiltonians, Phys. Rev., Volume 149 (1966), p. 491
[48] Resistance minimum in dilute magnetic alloys, Prog. Theor. Phys., Volume 32 (1964), p. 37
[49] The renormalization group: critical phenomena and the Kondo problem, Rev. Mod. Phys., Volume 47 (1975), p. 773
[50] A poor man's derivation of scaling laws for the Kondo problem, J. Phys. C, Volume 3 (1970), p. 2436
[51] Fermi liquid theory for the single-impurity Anderson model, Phys. Rev. B, Volume 92 (2015)
[52] Perturbation expansion for the Anderson Hamiltonian, Prog. Theor. Phys., Volume 53 (1975), p. 1286
[53] Renormalized perturbation expansions and Fermi liquid theory, Phys. Rev. Lett., Volume 70 (1993), p. 4007
Cited by Sources:
Comments - Policy