[Cristaux phoxoniques et optomécaniques dans les cavités]
Les cristaux phoxoniques sont des structures qui jouent simultanément le rôle de cristaux phononiques et photoniques en présentant des bandes interdites à la fois pour les deux types d'ondes. Par conséquent, en présence d'une cavité, ils sont susceptibles de confiner à la fois les phonons et les photons et de permettre une exaltation de leur interaction. Nous présentons dans cet article une revue de certains de nos travaux théoriques sur les interactions optomécaniques dans les cavités, en considérant plusieurs types de cristaux phoxoniques (bidimensionnels, sous forme de plaque ou de poutre). L'interaction phonon–photon est basée sur les deux mécanismes photoélastique et de déformation des interfaces. Des coefficients de couplage de quelques MHz ont été obtenus avec des modes acoustiques de quelques GHz. Dans la dernière partie de cette contribution, nous présentons quelques résultats préliminaires sur l'interaction optomécanique lorsqu'une nanoparticule métallique est introduite à l'intérieur de la cavité photonique, donnant lieu à des modes plasmon–photon couplés ou à une valeur élevée du champ électrique sur la nanoparticule.
Phoxonic crystals are dual phononic/photonic crystals exhibiting simultaneously band gaps for both types of excitations. Therefore, they have the ability to confine phonons and photons in the same cavity and in turn allow the enhancement of their interaction. In this paper, we review some of our theoretical works on cavity optomechanical interactions in different types of phoxonic crystals, including two-dimensional, slab, and nanobeam structures. Two mechanisms are behind the phonon–photon interaction, namely the photoelastic and the moving interface effects. Coupling rates of a few MHz are obtained with high-frequency phonons of a few GHz. Finally, we give some preliminary results about the optomechanical interaction when a metallic nanoparticle is introduced into the cavity, giving rise to coupled photon–plasmon modes or, in the case of very small particles, to an enhancement of the electric field at the position of the particle.
Mots-clés : Cristaux phononiques, Phoxonique, Optomécanique, Théorie, Photoélasticité, Effet d'interface en mouvement
Bahram Djafari-Rouhani 1 ; Said El-Jallal 1 ; Yan Pennec 1
@article{CRPHYS_2016__17_5_555_0, author = {Bahram Djafari-Rouhani and Said El-Jallal and Yan Pennec}, title = {Phoxonic crystals and cavity optomechanics}, journal = {Comptes Rendus. Physique}, pages = {555--564}, publisher = {Elsevier}, volume = {17}, number = {5}, year = {2016}, doi = {10.1016/j.crhy.2016.02.001}, language = {en}, }
Bahram Djafari-Rouhani; Said El-Jallal; Yan Pennec. Phoxonic crystals and cavity optomechanics. Comptes Rendus. Physique, Phononic crystals / Cristaux phononiques, Volume 17 (2016) no. 5, pp. 555-564. doi : 10.1016/j.crhy.2016.02.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.02.001/
[1] Surf. Sci. Rep., 65 (2010), p. 229
[2] Appl. Mech. Rev., 66 (2014)
[3] Nature, 503 (2013), p. 209
[4] Rev. Mod. Phys., 86 (2014), p. 1391
[5] Phys. Today, 65 (2012), p. 29
[6] Phys. Rev. Lett., 71 (1993), p. 2022
[7] Solid State Commun., 86 (1993), p. 141
[8] Phys. Rev. Lett., 58 (1987), p. 2059
[9] Molding the Flow of Light, Princeton University Press, Princeton, NJ, USA, 1995
[10] Phys. Rev. Lett., 89 (2002)
[11] Phys. Rev. B, 82 (2010)
[12] Opt. Express, 22 (2014), p. 31595
[13] Appl. Phys. Lett., 83 (2006), p. 595
[14] J. Appl. Phys., 109 (2011)
[15] J. Appl. Phys., 106 (2009)
[16] Opt. Express, 18 (2010), p. 14301
[17] Opt. Express, 18 (2010), p. 9164
[18] Phys. Rev. B, 82 (2010)
[19] AIP Adv., 1 (2011)
[20] Phys. Rev. B, 89 (2014)
[21] Nat. Commun., 5 (2014), p. 4452
[22] Appl. Phys. Lett., 101 (2012)
[23] J. Phys. Condens. Matter, 26 (2014)
[24] Opt. Express, 22 (2014), p. 28443
[25] Phys. Rev. Lett., 106 (2011)
[26] Nat. Photonics, 5 (2011), p. 605
[27] Opt. Express, 18 (2010), p. 14926
[28] Phys. Rev. B, 88 (2013)
[29] Phys. Rev. Lett., 112 (2014)
[30] J. Appl. Phys., 117 (2015)
[31] Nature, 462 (2009), p. 78
[32] Opt. Express, 17 (2009), p. 20078
[33] Appl. Phys. Lett., 101 (2012)
[34] Phys. Rev. X, 2 (2012)
[35] Appl. Phys. Lett., 100 (2012)
[36] Phys. Rev. B, 86 (2012)
[37] Nat. Commun., 5 (2014), p. 5242
[38] J. Appl. Phys., 113 (2013)
[39] Modeling light-sound interaction in nanoscale cavities and waveguides, Nanophotonics (2014) | DOI
[40] Science, 32 (2008), p. 1172
[41] Nat. Photonics, 3 (2009), p. 201
[42] Elastic Waves in Solids II: Generation, Acousto-Optic Interaction, Applications, Springer, 1999
[43] Localized and extended acoustic waves in superlattices. Light scattering by longitudinal phonons (D.L. Lockwood; J.F. Young, eds.), Light Scattering in Semiconductor Structures and Superlattices, NATO ASI Ser., Ser. B: Phys., vol. 273, Plenum Press, 1991, pp. 139-158
[44] Phys. Rev. E, 65 (2002)
[45] Appl. Phys. Lett., 64 (1994), p. 2794
[46] AIP Adv., 4 (2014)
[47] AIP Adv., 4 (2014)
[48] Plasmonics: Fundamentals and Applications, Springer US, Boston, MA, USA, 2007
[49] Nanometal plasmon polaritons, Surf. Sci. Rep., Volume 68 (2013), pp. 1-67
[50] Nano Lett., 3 (2003), p. 485
[51] J. Phys. Chem. C, 116 (2012), p. 17819
[52] Nanoscale, 6 (2014), p. 9494
[53] Combined photonic–plasmonic modes inside photonic crystal cavities, Plasmonics (2015) | DOI
[54] Phys. Rev. B, 6 (1972), p. 4370
- Dispersion of Acoustic Waves in Anodic Aluminum Oxide Phononic Crystals, Journal of Applied Spectroscopy, Volume 92 (2025) no. 1, p. 38 | DOI:10.1007/s10812-025-01875-4
- Strong Acousto-Plasmonic Coupling in Film-Coupled Nanoparticles Mediated by Surface Acoustic Waves, Materials Science Forum, Volume 1095 (2023), p. 11 | DOI:10.4028/p-ra5diq
- Coexistence of photonic and phononic corner states in a second-order topological phoxonic crystal, Applied Physics Letters, Volume 121 (2022) no. 19 | DOI:10.1063/5.0127301
- Electromechanical Brillouin scattering, Brillouin Scattering Part 2, Volume 110 (2022), p. 287 | DOI:10.1016/bs.semsem.2022.05.007
- Fundamentals, progress and perspectives on high-frequency phononic crystals, Journal of Physics D: Applied Physics, Volume 55 (2022) no. 19, p. 193002 | DOI:10.1088/1361-6463/ac4941
- Engineering nanoscale hypersonic phonon transport, Nature Nanotechnology, Volume 17 (2022) no. 9, p. 947 | DOI:10.1038/s41565-022-01178-1
- Unidirectional Coherent Phonon Emission in an Optomechanic Nanobeam Containing Coupled Cavities, Photonics, Volume 9 (2022) no. 9, p. 610 | DOI:10.3390/photonics9090610
- High-performance phoxonic cavity designs for enhanced acousto-optical interaction, Applied Optics, Volume 60 (2021) no. 11, p. 3224 | DOI:10.1364/ao.420294
- Acousto-optic cavity coupling in 2D phoxonic crystal with combined convex and concave holes, Journal of Applied Physics, Volume 130 (2021) no. 12, p. 123104 | DOI:10.1063/5.0060412
- Strong quadratic acousto-optic coupling in 1D multilayer phoxonic crystal cavity, Nanotechnology Reviews, Volume 10 (2021) no. 1, p. 443 | DOI:10.1515/ntrev-2021-0034
- Advances in Brillouin–Mandelstam light-scattering spectroscopy, Nature Photonics, Volume 15 (2021) no. 10, p. 720 | DOI:10.1038/s41566-021-00836-5
- Enhanced phonon-plasmon interaction in film-coupled dimer nanoridges mediated by surface acoustic waves, Optics Express, Volume 29 (2021) no. 26, p. 43104 | DOI:10.1364/oe.444430
- Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals, Sensors and Actuators A: Physical, Volume 331 (2021), p. 112915 | DOI:10.1016/j.sna.2021.112915
- Optomechanic Coupling in Ag Polymer Nanocomposite Films, The Journal of Physical Chemistry C, Volume 125 (2021) no. 27, p. 14854 | DOI:10.1021/acs.jpcc.1c04549
- Determination of 1-propanol, ethanol, and methanol concentrations in water based on a one-dimensional phoxonic crystal sensor, Applied Optics, Volume 59 (2020) no. 13, p. 3878 | DOI:10.1364/ao.388763
- Phononic and photonic properties of shape-engineered silicon nanoscale pillar arrays, Nanotechnology, Volume 31 (2020) no. 30, p. 30LT01 | DOI:10.1088/1361-6528/ab85ee
- Coupling of Integrated Waveguide and Optomechanic Cavity for Microwave Phonon Excitation in Si Nanobeams, Photonics, Volume 7 (2020) no. 3, p. 67 | DOI:10.3390/photonics7030067
- Surface Acoustic Waves-Localized Plasmon Interaction in Pillared Phononic Crystals, Physical Review Applied, Volume 13 (2020) no. 2 | DOI:10.1103/physrevapplied.13.024077
- Quasinormal-mode theory of elastic Purcell factors and Fano resonances of optomechanical beams, Physical Review Research, Volume 2 (2020) no. 4 | DOI:10.1103/physrevresearch.2.043290
- Tailoring coupling between light and spin waves with dual photonic–magnonic resonant layered structures, Journal of Optics, Volume 21 (2019) no. 1, p. 015603 | DOI:10.1088/2040-8986/aaf2c1
- Brillouin light scattering under one-dimensional confinement: Symmetry and interference self-canceling, Physical Review B, Volume 99 (2019) no. 16 | DOI:10.1103/physrevb.99.165431
- Efficient Analysis of Confined Guided Modes in Phoxonic Crystal Slabs, Journal of Lightwave Technology, Volume 35 (2017) no. 17, p. 3734 | DOI:10.1109/jlt.2017.2721999
- Theoretical study on the stimulated Brillouin scattering in a sub-wavelength anisotropic waveguide: acousto-optical coupling coefficients and effects of transverse anisotropies, Journal of the Optical Society of America B, Volume 34 (2017) no. 12, p. 2599 | DOI:10.1364/josab.34.002599
- Fully-disposable multilayered phononic crystal liquid sensor with symmetry reduction and a resonant cavity, Measurement, Volume 102 (2017), p. 20 | DOI:10.1016/j.measurement.2017.01.051
- Hyperuniform disordered phononic structures, Physical Review B, Volume 95 (2017) no. 9 | DOI:10.1103/physrevb.95.094120
- Photomagnonic nanocavities for strong light–spin-wave interaction, Physical Review B, Volume 96 (2017) no. 10 | DOI:10.1103/physrevb.96.104425
- Strong coupling of phononic cavity modes in one-dimensional corrugated nanobeam structures, Physical Review B, Volume 96 (2017) no. 18 | DOI:10.1103/physrevb.96.184302
- Enhanced acousto-optic properties in layered media, Physical Review B, Volume 96 (2017) no. 6 | DOI:10.1103/physrevb.96.064114
- Phonon interaction with coupled photonic-plasmonic modes in a phoxonic cavity, AIP Advances, Volume 6 (2016) no. 12 | DOI:10.1063/1.4968615
- Coupled Mode Theory of Optomechanical Crystals, IEEE Journal of Quantum Electronics, Volume 52 (2016) no. 10, p. 1 | DOI:10.1109/jqe.2016.2602058
- Confined states in photonic-magnonic crystals with complex unit cell, Journal of Applied Physics, Volume 120 (2016) no. 7 | DOI:10.1063/1.4961326
Cité par 31 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier