Comptes Rendus
Phoxonic crystals and cavity optomechanics
[Cristaux phoxoniques et optomécaniques dans les cavités]
Comptes Rendus. Physique, Phononic crystals / Cristaux phononiques, Volume 17 (2016) no. 5, pp. 555-564.

Les cristaux phoxoniques sont des structures qui jouent simultanément le rôle de cristaux phononiques et photoniques en présentant des bandes interdites à la fois pour les deux types d'ondes. Par conséquent, en présence d'une cavité, ils sont susceptibles de confiner à la fois les phonons et les photons et de permettre une exaltation de leur interaction. Nous présentons dans cet article une revue de certains de nos travaux théoriques sur les interactions optomécaniques dans les cavités, en considérant plusieurs types de cristaux phoxoniques (bidimensionnels, sous forme de plaque ou de poutre). L'interaction phonon–photon est basée sur les deux mécanismes photoélastique et de déformation des interfaces. Des coefficients de couplage de quelques MHz ont été obtenus avec des modes acoustiques de quelques GHz. Dans la dernière partie de cette contribution, nous présentons quelques résultats préliminaires sur l'interaction optomécanique lorsqu'une nanoparticule métallique est introduite à l'intérieur de la cavité photonique, donnant lieu à des modes plasmon–photon couplés ou à une valeur élevée du champ électrique sur la nanoparticule.

Phoxonic crystals are dual phononic/photonic crystals exhibiting simultaneously band gaps for both types of excitations. Therefore, they have the ability to confine phonons and photons in the same cavity and in turn allow the enhancement of their interaction. In this paper, we review some of our theoretical works on cavity optomechanical interactions in different types of phoxonic crystals, including two-dimensional, slab, and nanobeam structures. Two mechanisms are behind the phonon–photon interaction, namely the photoelastic and the moving interface effects. Coupling rates of a few MHz are obtained with high-frequency phonons of a few GHz. Finally, we give some preliminary results about the optomechanical interaction when a metallic nanoparticle is introduced into the cavity, giving rise to coupled photon–plasmon modes or, in the case of very small particles, to an enhancement of the electric field at the position of the particle.

Publié le :
DOI : 10.1016/j.crhy.2016.02.001
Keywords: Phononic crystals, Phoxonics, Optomechanics, Theory, Photoelasticity, Moving interface effect
Mots-clés : Cristaux phononiques, Phoxonique, Optomécanique, Théorie, Photoélasticité, Effet d'interface en mouvement

Bahram Djafari-Rouhani 1 ; Said El-Jallal 1 ; Yan Pennec 1

1 Institut d'électronique, de microélectronique et de nanotechnologie (IEMN), UMR CNRS 8520, UFR de physique, Université de Lille-1, Cité scientifique, 59652 Villeneuve-d'Ascq cedex, France
@article{CRPHYS_2016__17_5_555_0,
     author = {Bahram Djafari-Rouhani and Said El-Jallal and Yan Pennec},
     title = {Phoxonic crystals and cavity optomechanics},
     journal = {Comptes Rendus. Physique},
     pages = {555--564},
     publisher = {Elsevier},
     volume = {17},
     number = {5},
     year = {2016},
     doi = {10.1016/j.crhy.2016.02.001},
     language = {en},
}
TY  - JOUR
AU  - Bahram Djafari-Rouhani
AU  - Said El-Jallal
AU  - Yan Pennec
TI  - Phoxonic crystals and cavity optomechanics
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 555
EP  - 564
VL  - 17
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.02.001
LA  - en
ID  - CRPHYS_2016__17_5_555_0
ER  - 
%0 Journal Article
%A Bahram Djafari-Rouhani
%A Said El-Jallal
%A Yan Pennec
%T Phoxonic crystals and cavity optomechanics
%J Comptes Rendus. Physique
%D 2016
%P 555-564
%V 17
%N 5
%I Elsevier
%R 10.1016/j.crhy.2016.02.001
%G en
%F CRPHYS_2016__17_5_555_0
Bahram Djafari-Rouhani; Said El-Jallal; Yan Pennec. Phoxonic crystals and cavity optomechanics. Comptes Rendus. Physique, Phononic crystals / Cristaux phononiques, Volume 17 (2016) no. 5, pp. 555-564. doi : 10.1016/j.crhy.2016.02.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.02.001/

[1] Y. Pennec; J. Vasseur; B. Djafari-Rouhani; L. Dobrzynski; P.A. Deymier Surf. Sci. Rep., 65 (2010), p. 229

[2] M.I. Hussein; M.J. Leamy; M. Ruzzene Appl. Mech. Rev., 66 (2014)

[3] M. Maldovan Nature, 503 (2013), p. 209

[4] W. Aspelmeyer; T.J. Kippenberg; F. Marquardt Rev. Mod. Phys., 86 (2014), p. 1391

[5] Markus Aspelmeyer; Pierre Meystre; Keith Schwab Phys. Today, 65 (2012), p. 29

[6] M.S. Kushwaha; P. Halevi; L. Dobrzynski; B. Djafari-Rouhani Phys. Rev. Lett., 71 (1993), p. 2022

[7] M.M. Sigalas; E.N. Economou Solid State Commun., 86 (1993), p. 141

[8] E. Yablonovitch Phys. Rev. Lett., 58 (1987), p. 2059

[9] J.D. Joannopoulos; R.D. Meade; J.N. Winn Molding the Flow of Light, Princeton University Press, Princeton, NJ, USA, 1995

[10] M. Trigo; A. Bruchhausen; A. Fainstein; B. Jusserand; V. Thierry-Mieg; N.D. Lanzillotti-Kimura; A. Lemaitre; A. Fainstein; B. Jusserand; B. Perrin; A. Fainstein; N.D. Lanzillotti-Kimura; B. Jusserand; B. Perrin Phys. Rev. Lett., 89 (2002)

[11] I.E. Psarobas; N. Papanikolaou; N. Stefanou; B. Djafari-Rouhani; B. Bonello; V. Laude Phys. Rev. B, 82 (2010)

[12] E. Almpanis; N. Papanikolaou; N. Stefanou Opt. Express, 22 (2014), p. 31595

[13] M. Maldovan; E.L. Thomas; M. Maldovan; E.L. Thomas Appl. Phys. Lett., 83 (2006), p. 595

[14] D. Bria; M.B. Assouar; M. Oudich; Y. Pennec; J. Vasseur; B. Djafari-Rouhani J. Appl. Phys., 109 (2011)

[15] S. Sadat-Saleh; S. Benchabane; F.I. Baida; M.P. Bernal; V. Laude J. Appl. Phys., 106 (2009)

[16] Y. Pennec; B. Djafari-Rouhani; E.H. El Boudouti; C. Li; Y. El Hassouani; J.O. Vasseur; N. Papanikolaou; S. Benchabane; V. Laude; A. Martinez Opt. Express, 18 (2010), p. 14301

[17] S. Mohammadi; A.A. Eftekhar; A. Khelif; A. Adibi Opt. Express, 18 (2010), p. 9164

[18] Y. El Hassouani; C. Li; Y. Pennec; E.H. El Boudouti; H. Larabi; A. Akjouj; O. Boumatar; N. Papanikolaou; S. Benchabane; V. Laude; A. Martinez; B. Djafari-Rouhani Phys. Rev. B, 82 (2010)

[19] Y. Pennec; B. Djafari-Rouhani; C. Li; J.M. Escalante; A. Martinez; S. Benchabane; V. Laude; N. Papanikolaou AIP Adv., 1 (2011)

[20] M. Oudich; S. El-Jallal; Y. Pennec; B. Djafari-Rouhani; J. Gomis-Bresco; D. Navarro-Urrios; C.M. Sotomayor Torres; A. Martiınez; A. Makhoute Phys. Rev. B, 89 (2014)

[21] J. Gomis-Bresco; D. Navarro-Urrios; M. Oudich; S. El-Jallal; A. Griol; D. Puerto; E. Chavez; Y. Pennec; B. Djafari-Rouhani; F. Alzina; A. Martínez; C.M. Sotomayor Torres Nat. Commun., 5 (2014), p. 4452

[22] Q. Rolland; M. Oudich; S. El-Jallal; S. Dupont; Y. Pennec; J. Gazalet; J.C. Kastelik; G. Lévêque; B. Djafari-Rouhani Appl. Phys. Lett., 101 (2012)

[23] S. El-Jallal; M. Oudich; Y. Pennec; B. Djafari-Rouhani; A. Makhoute; Q. Rolland; S. Dupont; J. Gazalet J. Phys. Condens. Matter, 26 (2014)

[24] T.-X. Ma; K. Zou; Y.-S. Wang; C. Zhang; S. Xiao-Xing Opt. Express, 22 (2014), p. 28443

[25] E. Gavartin; R. Braive; I. Sagnes; O. Arcizet; A. Beveratos; T.J. Kippenberg Phys. Rev. Lett., 106 (2011)

[26] D.A. Fuhrmann; S.M. Thon; H. Kim; D. Bouwmeester; P.M. Petroff; A. Wixforth; H.J. Krenner Nat. Photonics, 5 (2011), p. 605

[27] A.H. Safavi-Naeini; O. Painter Opt. Express, 18 (2010), p. 14926

[28] S. El-Jallal; M. Oudich; Y. Pennec; B. Djafari-Rouhani; V. Laude; J.-C. Beugnot; A. Martiınez; J.-M. Escalante; A. Makhoute Phys. Rev. B, 88 (2013)

[29] A.H. Safavi-Naeini; J.T. Hill; S. Meenehan; Jasper Chan; Simon Gröblacher; Oskar Painter Phys. Rev. Lett., 112 (2014)

[30] T.-R. Lin; Y.-C. Huang; J.-C. Hsu J. Appl. Phys., 117 (2015)

[31] M. Eichenfield; J. Chan; R.M. Camacho; K.J. Vahala; O. Painter Nature, 462 (2009), p. 78

[32] M. Eichenfield; J. Chan; A.H. Safavi-Naeini; K.J. Vahala; O. Painter Opt. Express, 17 (2009), p. 20078

[33] J. Chan; A.H. Safavi-Naeini; J.T. Hill; S. Meenehan; O. Painter Appl. Phys. Lett., 101 (2012)

[34] P.T. Rakich; C. Reinke; R. Camacho; P. Davids; Z. Wang Phys. Rev. X, 2 (2012)

[35] F.-L. Hsiao; C.-Y. Hsieh; H.-Y. Hsieh; C.-C. Chiu Appl. Phys. Lett., 100 (2012)

[36] J.-Charles Beugnot; V. Laude Phys. Rev. B, 86 (2012)

[37] J.-C. Beugnot; S. Lebrun; G. Pauliat; H. Maillotte; V. Laude; T. Sylvestre Nat. Commun., 5 (2014), p. 5242

[38] T.-R. Lin; C.-H. Lin; J.-C. Hsu J. Appl. Phys., 113 (2013)

[39] Y. Pennec; V. Laude; N. Papanikolaou; B. Djafari-Rouhani; M. Oudich; S. El-Jallal; J.-C. Beugnot; J.M. Escalante; A. Martínez Modeling light-sound interaction in nanoscale cavities and waveguides, Nanophotonics (2014) | DOI

[40] T.J. Kippenberg; K.J. Vahala Science, 32 (2008), p. 1172

[41] I. Favero; K. Karrai Nat. Photonics, 3 (2009), p. 201

[42] D. Royer; E. Dieulesaint Elastic Waves in Solids II: Generation, Acousto-Optic Interaction, Applications, Springer, 1999

[43] B. Djafari-Rouhani; E.M. Khourdifi Localized and extended acoustic waves in superlattices. Light scattering by longitudinal phonons (D.L. Lockwood; J.F. Young, eds.), Light Scattering in Semiconductor Structures and Superlattices, NATO ASI Ser., Ser. B: Phys., vol. 273, Plenum Press, 1991, pp. 139-158

[44] S.G. Johnson; M. Ibanescu; M.A. Skorobogatiy; O. Weisberg; J.D. Joannopoulos; Y. Fink Phys. Rev. E, 65 (2002)

[45] P. Renosi; J. Sapriel Appl. Phys. Lett., 64 (1994), p. 2794

[46] B. Djafari-Rouhani; S. El-Jallal; M. Oudich; Y. Pennec AIP Adv., 4 (2014)

[47] D. Navarro-Urrios; J. Gomis-Bresco; S. El-Jallal; M. Oudich; A. Pitani; N. Capuj; A. Tredicucci; A. Griol; Y. Pennec; B. Djafari-Rouhani; A. Martinez; C.M. Sotomayor Torres AIP Adv., 4 (2014)

[48] S.A. Maier Plasmonics: Fundamentals and Applications, Springer US, Boston, MA, USA, 2007

[49] A. Akjouj; G. Levêque; S. Szunerits; Y. Pennec; B. Djafari-Rouhani; R. Boukherroub; L. Dobrzynski Nanometal plasmon polaritons, Surf. Sci. Rep., Volume 68 (2013), pp. 1-67

[50] J.J. Mock; D.R. Smith; S. Schultz Nano Lett., 3 (2003), p. 485

[51] O. Saison-Francioso; G. Lévêque; A. Akjouj; Y. Pennec; B. Djafari-Rouhani; S. Szunerits; R. Boukherroub J. Phys. Chem. C, 116 (2012), p. 17819

[52] D. Jaque; L. Martiınez Maestro; B. Del Rosal; P. Haro-Gonzalez; A. Benayas; J.L. Plaza; E. Martin Rodriguez; J. Garcia Sole Nanoscale, 6 (2014), p. 9494

[53] A. Mrabti; S. El-Jallal; G. Lévêque; A. Akjouj; Y. Pennec; B. Djafari-Rouhani Combined photonic–plasmonic modes inside photonic crystal cavities, Plasmonics (2015) | DOI

[54] P.B. Johnson; R.W. Christy Phys. Rev. B, 6 (1972), p. 4370

  • S. D. Abdurakhmonov; M. S. Ashurov Dispersion of Acoustic Waves in Anodic Aluminum Oxide Phononic Crystals, Journal of Applied Spectroscopy, Volume 92 (2025) no. 1, p. 38 | DOI:10.1007/s10812-025-01875-4
  • Adnan Noual; Rock Akiki; Gaetan Leveque; Yan Pennec; Houssaine El Boudouti; Bahram Djafari-Rouhani Strong Acousto-Plasmonic Coupling in Film-Coupled Nanoparticles Mediated by Surface Acoustic Waves, Materials Science Forum, Volume 1095 (2023), p. 11 | DOI:10.4028/p-ra5diq
  • Lin-Lin Lei; Ling-Juan He; Wen-Xing Liu; Qing-Hua Liao; Tian-Bao Yu Coexistence of photonic and phononic corner states in a second-order topological phoxonic crystal, Applied Physics Letters, Volume 121 (2022) no. 19 | DOI:10.1063/5.0127301
  • Huan Li; Omar Florez; Bingcheng Pan; Guilhem Madiot; Clivia M. Sotomayor Torres; Mo Li Electromechanical Brillouin scattering, Brillouin Scattering Part 2, Volume 110 (2022), p. 287 | DOI:10.1016/bs.semsem.2022.05.007
  • Yu Cang; Yabin Jin; Bahram Djafari-Rouhani; George Fytas Fundamentals, progress and perspectives on high-frequency phononic crystals, Journal of Physics D: Applied Physics, Volume 55 (2022) no. 19, p. 193002 | DOI:10.1088/1361-6463/ac4941
  • O. Florez; G. Arregui; M. Albrechtsen; R. C. Ng; J. Gomis-Bresco; S. Stobbe; C. M. Sotomayor-Torres; P. D. García Engineering nanoscale hypersonic phonon transport, Nature Nanotechnology, Volume 17 (2022) no. 9, p. 947 | DOI:10.1038/s41565-022-01178-1
  • Alexander V. Korovin; Yan Pennec; Bahram Djafari-Rouhani Unidirectional Coherent Phonon Emission in an Optomechanic Nanobeam Containing Coupled Cavities, Photonics, Volume 9 (2022) no. 9, p. 610 | DOI:10.3390/photonics9090610
  • Arafa H. Aly; Samar M. Shaban; Ahmed Mehaney High-performance phoxonic cavity designs for enhanced acousto-optical interaction, Applied Optics, Volume 60 (2021) no. 11, p. 3224 | DOI:10.1364/ao.420294
  • Jun Jin; Shan Jiang; Hongping Hu; Lamin Zhan; Xiaohong Wang; Vincent Laude Acousto-optic cavity coupling in 2D phoxonic crystal with combined convex and concave holes, Journal of Applied Physics, Volume 130 (2021) no. 12, p. 123104 | DOI:10.1063/5.0060412
  • Jun Jin; Xiaohong Wang; Lamin Zhan; Hongping Hu Strong quadratic acousto-optic coupling in 1D multilayer phoxonic crystal cavity, Nanotechnology Reviews, Volume 10 (2021) no. 1, p. 443 | DOI:10.1515/ntrev-2021-0034
  • Fariborz Kargar; Alexander A. Balandin Advances in Brillouin–Mandelstam light-scattering spectroscopy, Nature Photonics, Volume 15 (2021) no. 10, p. 720 | DOI:10.1038/s41566-021-00836-5
  • A. Noual; R. Akiki; G. Lévêque; Y. Pennec; B. Djafari-Rouhani Enhanced phonon-plasmon interaction in film-coupled dimer nanoridges mediated by surface acoustic waves, Optics Express, Volume 29 (2021) no. 26, p. 43104 | DOI:10.1364/oe.444430
  • L. Forzani; C.G. Mendez; R. Urteaga; A.E. Huespe Design and optimization of an opto-acoustic sensor based on porous silicon phoxonic crystals, Sensors and Actuators A: Physical, Volume 331 (2021), p. 112915 | DOI:10.1016/j.sna.2021.112915
  • Adnane Noual; Eunsoo Kang; Tanmoy Maji; Manos Gkikas; Bahram Djafari-Rouhani; George Fytas Optomechanic Coupling in Ag Polymer Nanocomposite Films, The Journal of Physical Chemistry C, Volume 125 (2021) no. 27, p. 14854 | DOI:10.1021/acs.jpcc.1c04549
  • Samar M. Shaban; Ahmed Mehaney; Arafa H. Aly Determination of 1-propanol, ethanol, and methanol concentrations in water based on a one-dimensional phoxonic crystal sensor, Applied Optics, Volume 59 (2020) no. 13, p. 3878 | DOI:10.1364/ao.388763
  • Chun Yu Tammy Huang; Fariborz Kargar; Topojit Debnath; Bishwajit Debnath; Michael D Valentin; Ron Synowicki; Stefan Schoeche; Roger K Lake; Alexander A Balandin Phononic and photonic properties of shape-engineered silicon nanoscale pillar arrays, Nanotechnology, Volume 31 (2020) no. 30, p. 30LT01 | DOI:10.1088/1361-6528/ab85ee
  • Abdellatif Gueddida; Bahram Djafari Rouhani; Yan Pennec; Andrea Di Donato; Luca Pierantoni; Alexander Korovin; Davide Mencarelli Coupling of Integrated Waveguide and Optomechanic Cavity for Microwave Phonon Excitation in Si Nanobeams, Photonics, Volume 7 (2020) no. 3, p. 67 | DOI:10.3390/photonics7030067
  • A. Noual; R. Akiki; Y. Pennec; E. H. El Boudouti; B. Djafari-Rouhani Surface Acoustic Waves-Localized Plasmon Interaction in Pillared Phononic Crystals, Physical Review Applied, Volume 13 (2020) no. 2 | DOI:10.1103/physrevapplied.13.024077
  • Al-Waleed El-Sayed; Stephen Hughes Quasinormal-mode theory of elastic Purcell factors and Fano resonances of optomechanical beams, Physical Review Research, Volume 2 (2020) no. 4 | DOI:10.1103/physrevresearch.2.043290
  • Petros-Andreas Pantazopoulos; Nikolaos Papanikolaou; Nikolaos Stefanou Tailoring coupling between light and spin waves with dual photonic–magnonic resonant layered structures, Journal of Optics, Volume 21 (2019) no. 1, p. 015603 | DOI:10.1088/2040-8986/aaf2c1
  • B. Graczykowski; A. Gueddida; B. Djafari-Rouhani; H.-J. Butt; G. Fytas Brillouin light scattering under one-dimensional confinement: Symmetry and interference self-canceling, Physical Review B, Volume 99 (2019) no. 16 | DOI:10.1103/physrevb.99.165431
  • Mohammad Hasan Aram; Sina Khorasani Efficient Analysis of Confined Guided Modes in Phoxonic Crystal Slabs, Journal of Lightwave Technology, Volume 35 (2017) no. 17, p. 3734 | DOI:10.1109/jlt.2017.2721999
  • Xiao-Xing Su; Xiao-Shuang Li; Yue-Sheng Wang; Heow Pueh Lee Theoretical study on the stimulated Brillouin scattering in a sub-wavelength anisotropic waveguide: acousto-optical coupling coefficients and effects of transverse anisotropies, Journal of the Optical Society of America B, Volume 34 (2017) no. 12, p. 2599 | DOI:10.1364/josab.34.002599
  • S. Villa-Arango; R. Torres; P.A. Kyriacou; R. Lucklum Fully-disposable multilayered phononic crystal liquid sensor with symmetry reduction and a resonant cavity, Measurement, Volume 102 (2017), p. 20 | DOI:10.1016/j.measurement.2017.01.051
  • G. Gkantzounis; T. Amoah; M. Florescu Hyperuniform disordered phononic structures, Physical Review B, Volume 95 (2017) no. 9 | DOI:10.1103/physrevb.95.094120
  • P. A. Pantazopoulos; N. Stefanou; E. Almpanis; N. Papanikolaou Photomagnonic nanocavities for strong light–spin-wave interaction, Physical Review B, Volume 96 (2017) no. 10 | DOI:10.1103/physrevb.96.104425
  • A. V. Korovin; Y. Pennec; B. Djafari-Rouhani Strong coupling of phononic cavity modes in one-dimensional corrugated nanobeam structures, Physical Review B, Volume 96 (2017) no. 18 | DOI:10.1103/physrevb.96.184302
  • M. J. A. Smith; C. Martijn de Sterke; C. Wolff; M. Lapine; C. G. Poulton Enhanced acousto-optic properties in layered media, Physical Review B, Volume 96 (2017) no. 6 | DOI:10.1103/physrevb.96.064114
  • S. El-Jallal; A. Mrabti; G. Lévêque; A. Akjouj; Y. Pennec; B. Djafari-Rouhani Phonon interaction with coupled photonic-plasmonic modes in a phoxonic cavity, AIP Advances, Volume 6 (2016) no. 12 | DOI:10.1063/1.4968615
  • Sina Khorasani Coupled Mode Theory of Optomechanical Crystals, IEEE Journal of Quantum Electronics, Volume 52 (2016) no. 10, p. 1 | DOI:10.1109/jqe.2016.2602058
  • Yu. S. Dadoenkova; N. N. Dadoenkova; I. L. Lyubchanskii; J. W. Kłos; M. Krawczyk Confined states in photonic-magnonic crystals with complex unit cell, Journal of Applied Physics, Volume 120 (2016) no. 7 | DOI:10.1063/1.4961326

Cité par 31 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: