It is common for dispersion curves of damped periodic materials to be based on real frequencies as a function of complex wavenumbers or, conversely, real wavenumbers as a function of complex frequencies. The former condition corresponds to harmonic wave motion where a driving frequency is prescribed and where attenuation due to dissipation takes place only in space alongside spatial attenuation due to Bragg scattering. The latter condition, on the other hand, relates to free wave motion admitting attenuation due to energy loss only in time while spatial attenuation due to Bragg scattering also takes place. Here, we develop an algorithm for 1D systems that provides dispersion curves for damped free wave motion based on frequencies and wavenumbers that are permitted to be simultaneously complex. This represents a generalized application of Bloch's theorem and produces a dispersion band structure that fully describes all attenuation mechanisms, in space and in time. The algorithm is applied to a viscously damped mass-in-mass metamaterial exhibiting local resonance. A frequency-dependent effective mass for this damped infinite chain is also obtained.
Les courbes de dispersion des matériaux périodiques amortis sont habituellement basées soit sur des fréquences réelles en fonction de nombres d'onde complexes, soit sur des nombres d'onde réels en fonction de fréquences complexes. Le premier cas correspond à la propagation d'ondes harmoniques, dont la fréquence d'excitation est imposée, et dont l'atténuation due à la dissipation survient uniquement dans l'espace, en même temps que l'atténuation spatiale due à la diffraction de Bragg. Le second cas concerne la propagation d'ondes libres dont l'atténuation est due à une perte d'énergie dans le temps, en plus de l'atténuation spatiale causée par la diffraction de Bragg. Dans cet article, nous développons un algorithme pour des systèmes unidimensionnels afin d'obtenir—pour le mouvement d'ondes libres amorties—les courbes de dispersion fondées sur des fréquences et des nombres d'onde qui sont autorisés à être simultanément complexes. Cette application généralisée du théorème de Bloch fournit une structure de bandes qui décrit pleinement tous les mécanismes d'atténuation, dans l'espace comme dans le temps. L'algorithme est appliqué à un metamatériau à résonance locale (masse incluse dans une masse) amorti de façon visqueuse. Une masse effective dépendant de la fréquence est également obtenue pour cette chaine infinie amortie.
Mot clés : Ondes amorties, Dispersion complexe, Structure de bandes complexe, Cristaux phononiques, Métamatériaux acoustiques, Matériaux périodiques
Michael J. Frazier 1; Mahmoud I. Hussein 1
@article{CRPHYS_2016__17_5_565_0, author = {Michael J. Frazier and Mahmoud I. Hussein}, title = {Generalized {Bloch's} theorem for viscous metamaterials: {Dispersion} and effective properties based on frequencies and wavenumbers that are simultaneously complex}, journal = {Comptes Rendus. Physique}, pages = {565--577}, publisher = {Elsevier}, volume = {17}, number = {5}, year = {2016}, doi = {10.1016/j.crhy.2016.02.009}, language = {en}, }
TY - JOUR AU - Michael J. Frazier AU - Mahmoud I. Hussein TI - Generalized Bloch's theorem for viscous metamaterials: Dispersion and effective properties based on frequencies and wavenumbers that are simultaneously complex JO - Comptes Rendus. Physique PY - 2016 SP - 565 EP - 577 VL - 17 IS - 5 PB - Elsevier DO - 10.1016/j.crhy.2016.02.009 LA - en ID - CRPHYS_2016__17_5_565_0 ER -
%0 Journal Article %A Michael J. Frazier %A Mahmoud I. Hussein %T Generalized Bloch's theorem for viscous metamaterials: Dispersion and effective properties based on frequencies and wavenumbers that are simultaneously complex %J Comptes Rendus. Physique %D 2016 %P 565-577 %V 17 %N 5 %I Elsevier %R 10.1016/j.crhy.2016.02.009 %G en %F CRPHYS_2016__17_5_565_0
Michael J. Frazier; Mahmoud I. Hussein. Generalized Bloch's theorem for viscous metamaterials: Dispersion and effective properties based on frequencies and wavenumbers that are simultaneously complex. Comptes Rendus. Physique, Volume 17 (2016) no. 5, pp. 565-577. doi : 10.1016/j.crhy.2016.02.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.02.009/
[1] Wave propagation in continuous periodic structures: Research contributions from Southampton, 1964–1995, J. Sound Vib., Volume 190 (1996), pp. 495-524
[2] Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook, Appl. Mech. Rev., Volume 66 (2014)
[3] Acoustic Metamaterials and Phononic Crystals (P.A. Deymier, ed.), Springer, Heidelberg, Germany, 2013
[4] Phononic Crystals: Fundamentals and Applications (A. Khelif; A. Adibi, eds.), Springer, New York, 2015
[5] Phononic Crystals: Artificial Crystals for Sonic, Acoustic and Elastic Waves, De Gruyter, Berlin, 2015
[6] Elastic and acoustic wave band structure, J. Sound Vib., Volume 158 (1992), pp. 377-382
[7] Acoustic band structure of periodic elastic composites, Phys. Rev. Lett., Volume 71 (1993), pp. 2022-2025
[8] Locally resonant sonic materials, Science, Volume 289 (2000), pp. 1734-1736
[9] Three-component elastic wave band-gap material, Phys. Rev. B, Volume 65 (2002)
[10] Two-dimensional locally resonant phononic crystals with binary structures, Phys. Rev. Lett., Volume 93 (2004)
[11] Low-frequency gaps in a phononic crystal constituted of cylindrical dots deposited on a thin homogeneous plate, Phys. Rev. B, Volume 78 (2008)
[12] Evidence of complete band gap and resonances in a plate with periodic stubbed surface, Appl. Phys. Lett., Volume 93 (2008)
[13] Double-negative acoustic metamaterial, Phys. Rev. E, Volume 70 (2004)
[14] Metamaterial with simultaneously negative bulk modulus and mass density, Phys. Rev. Lett., Volume 99 (2007)
[15] Negative group velocity from resonances in two-dimensional phononic crystals, Waves Random Complex Media, Volume 20 (2010), pp. 276-288
[16] An elastic metamaterial with simultaneously negative mass density and bulk modulus, Appl. Phys. Lett., Volume 98 (2011)
[17] Metadamping: an emergent phenomenon in dissipative metamaterials, J. Sound Vib., Volume 332 (2013), pp. 4767-4774
[18] Hyper-damping properties of a stiff and stable linear oscillator with a negative stiffness element, J. Sound Vib., Volume 346 (2015), pp. 37-52
[19] Dissipative elastic metamaterials for broadband wave mitigation at subwavelength scale, Compos. Struct., Volume 136 (2016), pp. 358-371
[20] Nanophononic metamaterial: Thermal conductivity reduction by local resonance, Phys. Rev. Lett., Volume 112 (2014)
[21] The Theory of Sound, vol. 1, Macmillan and Co., London, 1877
[22] Classical normal modes in damped linear dynamic systems, J. Appl. Mech. – Trans. ASME, Volume 32 (1965), pp. 583-588
[23] Damping modelling using generalized proportional damping, J. Sound Vib., Volume 293 (2005), pp. 156-170
[24] Experimental identification of generalized proportional viscous damping matrix, J. Vib. Acoust., Volume 131 (2009)
[25] Linear damping models for structural vibration, J. Sound Vib., Volume 215 (1998), pp. 547-569
[26] Identification of damping: part 1, viscous damping, J. Sound Vib., Volume 243 (2001), pp. 43-61
[27] Viscous damping identification in linear vibration, J. Sound Vib., Volume 303 (2007), pp. 475-500
[28] Propagation of bending waves in a periodic beam, Int. J. Eng. Sci., Volume 25 (1987), pp. 85-94
[29] On the forced response of one-dimensional periodic structures: vibration localization by damping, J. Sound Vib., Volume 178 (1994), pp. 411-428
[30] Evanescent Bloch waves and the complex band structure of phononic crystals, Phys. Rev. B, Volume 80 (2009)
[31] Propagating and evanescent properties of double-point defects in sonic crystals, New J. Phys., Volume 12 (2010)
[32] Material loss influence on the complex band structure and group velocity in phononic crystals, Phys. Rev. B, Volume 83 (2011)
[33] Analysis of phononic bandgap structures with dissipation, J. Vib. Acoust., Volume 135 (2013)
[34] A general theory of harmonic wave propagation in linear periodic systems with multiple coupling, J. Sound Vib., Volume 27 (1973), pp. 235-260
[35] Analysis of Bloch's method in structures with energy dissipation, J. Vib. Acoust., Volume 133 (2011)
[36] Floquet–Bloch decomposition for the computation of dispersion of two-dimensional periodic, damped mechanical systems, Int. J. Solids Struct., Volume 48 (2011), pp. 2837-2848
[37] Dispersion relations and mode shapes for waves in laminated viscoelastic composites by finite difference methods, Comput. Struct., Volume 5 (1975), pp. 279-285
[38] Acoustic band gaps in composites of solids and viscous liquids, Solid State Commun., Volume 106 (1998), pp. 77-81
[39] Theory of damped Bloch waves in elastic media, Phys. Rev. B, Volume 80 (2009)
[40] Band structure of phononic crystals with general damping, J. Appl. Phys., Volume 108 (2010)
[41] Analysis of damped Bloch waves by the Rayleigh perturbation method, J. Vib. Acoust., Volume 135 (2013)
[42] Wave Propagation in Elastic Solids, North-Holland, London, 1999
[43] Modelling wave propagation in two-dimensional structures using finite element analysis, J. Sound Vib., Volume 318 (2008), pp. 884-902
[44] Estimation of the loss factor of viscoelastic laminated panels from finite element analysis, J. Sound Vib., Volume 329 (2010), pp. 3928-3939
[45] Microdynamics of phononic materials (S. Li; X.-L. Gao, eds.), Handbook of Micromechanics and Nanomechanics, Pan Stanford Publishing, 2013 (Chapter 1)
[46] On the negative effective mass density in acoustic metamaterials, Int. J. Eng. Sci., Volume 47 (2009), pp. 610-617
[47] Analysis of Bloch's method and the propagation technique in periodic structures, J. Vib. Acoust., Volume 133 (2011)
[48] On modifications of Newton's second law and linear continuum elastodynamics, Proc. R. Soc. A, Volume 463 (2007), pp. 855-880
[49] Negative effective dynamics mass-density and stiffness: Micro-architecture and phononic transport in periodic composites, AIP Adv., Volume 1 (2011)
Cited by Sources:
Comments - Policy