Starburst galaxies have a highly increased star-formation rate compared to regular galaxies and inject huge amounts of kinetic power into the interstellar medium via supersonic stellar winds, and supernova explosions. Supernova remnants, which are considered to be the main source of cosmic rays (CRs), form an additional, significant energy and pressure component and might influence the star-formation process in a major way. Observations of starburst galaxies at γ-ray energies give us the unique opportunity to study non-thermal phenomena associated with hadronic CRs and their relation to the star-formation process. In this work, recent observations of starburst galaxies with space and ground-based γ-ray telescopes are being reviewed, and the current state of theoretical work on the γ-ray emission is discussed. A special emphasis is put on the prospects of the next-generation Cherenkov Telescope Array for the study of starburst galaxies in particular and star-forming galaxies in general.
Les galaxies à flambées d'étoiles se caractérisent par un taux de formation d'étoiles beaucoup plus élevé que ceux des galaxies ordinaires. Les vents stellaires supersoniques et les explosions de supernovæ qui s'y produisent injectent dans le milieu interstellaire une énergie cinétique considérable. De plus, alors que les vestiges de supernovæ sont considérés comme les sources principales de rayons cosmiques, ces derniers augmentent de manière significative la pression et la densité d'énergie du milieu, au point d'influencer fortement le processus de formation d'étoiles. L'observation de galaxies à flambées d'étoiles en astronomie gamma est un moyen unique pour étudier les phénomènes non thermiques dus à des protons et noyaux cosmiques, et leur rôle dans le processus de formation d'étoiles. Cet article passe en revue les observations récentes de galaxies à flambées d'étoiles avec des télescopes à rayons gamma dans l'espace et à partir du sol. Il discute aussi les interprétations théoriques actuelles de l'émission gamma observée. Enfin, un accent particulier est mis sur l'impact des télescopes à effet Tcherenkov atmosphérique de la prochaine génération sur l'étude des galaxies à flambée d'étoiles en particulier et, plus généralement, sur la formation d'étoiles dans les galaxies.
Mot clés : Rayons cosmiques, Rayons gamma, Amas d'étoiles, Galaxies à flambée d'étoiles, Galaxies infrarouges ultralumineuses
Stefan Ohm 1
@article{CRPHYS_2016__17_6_585_0, author = {Stefan Ohm}, title = {Starburst galaxies as seen by gamma-ray telescopes}, journal = {Comptes Rendus. Physique}, pages = {585--593}, publisher = {Elsevier}, volume = {17}, number = {6}, year = {2016}, doi = {10.1016/j.crhy.2016.04.003}, language = {en}, }
Stefan Ohm. Starburst galaxies as seen by gamma-ray telescopes. Comptes Rendus. Physique, Volume 17 (2016) no. 6, pp. 585-593. doi : 10.1016/j.crhy.2016.04.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.04.003/
[1] Star formation in the Milky Way and nearby galaxies, Annu. Rev. Astron. Astrophys., Volume 50 (2012), pp. 531-608
[2] The big problems in star formation: the star formation rate, stellar clustering, and the initial mass function, Phys. Rep., Volume 539 (2014) no. 2, pp. 49-134
[3] et al. The ionization fraction in dense cloud cores, Astrophys. J., Volume 499 (1998), pp. 234-249
[4] Interstellar chemistry special feature: the galactic cosmic ray ionization rate, Proc. Natl. Acad. Sci. USA, Volume 103 (2006), pp. 12269-12273
[5] Investigating the cosmic-ray ionization rate in the galactic diffuse interstellar medium through observations of H+3, Astrophys. J., Volume 745 (2012), p. 91
[6] Cosmic-ray astrochemistry, Chem. Soc. Rev., Volume 42 (2013), pp. 7763-7773
[7] The Eddington limit in cosmic rays: an explanation for the observed faintness of starbursting galaxies, Astrophys. J., Volume 687 ( November 2008 ), pp. 202-215
[8] et al. Extreme cosmic ray dominated regions: a new paradigm for high star formation density events in the Universe, Mon. Not. R. Astron. Soc., Volume 414 ( June 2011 ), pp. 1705-1714
[9] The initial conditions of star formation: cosmic rays as the fundamental regulators (D.F. Torres; O. Reimer, eds.), Cosmic Rays in Star-Forming Environments, Adv. Solid State Phys., vol. 34, 2013, p. 41
[10] et al. Simulations of disk galaxies with cosmic ray driven galactic winds, Astrophys. J. Lett., Volume 777 ( November 2013 )
[11] Cosmic ray driven outflows in global galaxy disc models, Mon. Not. R. Astron. Soc., Volume 437 ( February 2014 ), pp. 3312-3330
[12] Nonthermal particles and photons in starburst regions and superbubbles, Astron. Astrophys. Rev., Volume 22 ( November 2014 )
[13] Cosmic magnetic fields: observations and prospects (F.A. Aharonian; W. Hofmann; F.M. Rieger, eds.), American Institute of Physics Conference Series, American Institute of Physics Conference Series, vol. 1381, September 2011 , pp. 117-136
[14] M82, the Galaxy, and the dependence of cosmic ray energy production on the supernova rate, Astron. Astrophys., Volume 213 ( April 1989 ), p. L12-L14
[15] M82 in gamma-rays, Astron. Astrophys., Volume 248 ( August 1991 ), p. 419
[16] et al. Diffuse gamma-ray emission from the starburst galaxy NGC 253, Astrophys. J., Volume 460 ( March 1996 ), p. 295
[17] Diffuse gamma-ray emission from starburst galaxies and M31, Astrophys. J., Volume 516 ( May 1999 ), pp. 744-749
[18] Nachweis von TeV-Gamma-Strahlung aus der Richtung der Blazare H1426+428 und 1ES1959+650 sowie der Radiogalaxie M87 mit den HEGRA-Cherenkov-Teleskopen, Universität Hamburg, Germany, 2007 (PhD thesis)
[19] et al. Detection of gamma rays from a starburst galaxy, Science, Volume 326 (2009), pp. 1080-1082
[20] et al. A connection between star formation activity and cosmic rays in the starburst galaxy M82, Nature, Volume 462 (2009), pp. 770-772
[21] et al. Detection of gamma-ray emission from the starburst galaxies M82 and NGC 253 with the large area telescope on Fermi, Astrophys. J. Lett., Volume 709 (2010), p. L152-L157
[22] et al. GeV observations of star-forming galaxies with the Fermi large area telescope, Astrophys. J., Volume 755 (2012), p. 164
[23] et al. Spectral analysis and interpretation of the γ-ray emission from the starburst galaxy NGC 253, Astrophys. J., Volume 757 (2012), p. 158
[24] et al. First bounds on the very high energy γ-ray emission from Arp 220, Astrophys. J., Volume 658 (2007), pp. 245-248
[25] Discovery of GeV emission from the direction of the luminous infrared Galaxy NGC 2146, Astrophys. J., Volume 794 (2014), p. 26
[26] et al. Seyfert 2 galaxies in the GeV band: jets and starburst, Astron. Astrophys., Volume 524 (2010)
[27] et al. Diffuse galactic gamma-ray emission with H.E.S.S, Phys. Rev. D, Volume 90 (2014) no. 12
[28] et al. The exceptionally powerful TeV γ-ray emitters in the Large Magellanic Cloud, Science, Volume 347 (2015), p. 406
[29] Very-high-energy gamma-ray observations of M 31 with VERITAS, The X-ray Universe 2014, 2014, p. 230
[30] High-energy emission from galaxies: the star-formation/gamma-ray connection, 2012 (ArXiv e-prints:) | arXiv
[31] et al. Cosmic rays and the magnetic field in the nearby starburst galaxy NGC 253 III. Helical magnetic fields in the nuclear outflow, Astron. Astrophys., Volume 535 (2011)
[32] Non-thermal emission from pulsar-wind nebulae in starburst galaxies, Mon. Not. R. Astron. Soc., Volume 429 (2013), p. L70-L74
[33] et al. ALMA imaging of HCN, CS and dust in Arp 220 and NGC 6240, Astrophys. J., Volume 800 (2015)
[34] et al. Parsec-scale magnetic fields in Arp 220, Mon. Not. R. Astron. Soc., Volume 447 (2015), pp. 1103-1111
[35] High energy γ-ray emission from the starburst nucleus of NGC 253, Astron. Astrophys., Volume 444 (2005), pp. 403-415
[36] High-energy emission from the starburst galaxy NGC 253, Mon. Not. R. Astron. Soc., Volume 401 (2010), pp. 473-478
[37] The physics of the far-infrared-radio correlation. I. Calorimetry, conspiracy, and implications, Astrophys. J., Volume 717 ( July 2010 ), pp. 1-28
[38] et al. On the GeV and TeV detections of the starburst galaxies M82 and NGC 253, Astrophys. J., Volume 734 (2011), p. 107
[39] Properties of nearby starburst galaxies based on their diffuse gamma-ray emission, Astrophys. J., Volume 755 (2012), p. 106
[40] et al. Winds, clumps, and interacting cosmic rays in M82, Astrophys. J., Volume 768 (2013)
[41] The equipartition magnetic field formula in starburst galaxies: accounting for pionic secondaries and strong energy losses, Mon. Not. R. Astron. Soc., Volume 430 (2013), pp. 3171-3186
[42] Gamma-rays from pulsar wind nebulae in starburst galaxies, Astropart. Phys., Volume 35 (2012), pp. 797-800
[43] et al. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy, Exp. Astron., Volume 32 (2011), pp. 193-316
[44] The future of gamma-ray astronomy, C. R. Physique, Volume 17 (2016) no. 6, pp. 663-678 (in this issue)
[45] et al. Monte Carlo design studies for the Cherenkov Telescope Array, Astropart. Phys., Volume 43 (2013), pp. 171-188
[46] et al. Observations of the Crab nebula with HESS, Astron. Astrophys., Volume 457 (2006), pp. 899-915
[47] Gamma-ray signatures of cosmic ray acceleration, propagation, and confinement in the era of CTA, Astropart. Phys., Volume 43 (2013), pp. 276-286
[48] et al. Observation of high-energy astrophysical neutrinos in three years of IceCube data, Phys. Rev. Lett., Volume 113 (2014) no. 10
[49] et al. What IceCube data tell us about neutrino emission from star-forming galaxies (so far), Phys. Rev. D, Volume 89 (2014) no. 12
[50] Star-forming galaxies as the origin of diffuse high-energy backgrounds: gamma-ray and neutrino connections, and implications for starburst history, J. Cosmol. Astropart. Phys., Volume 9 (2014)
[51] The diffuse gamma-ray flux associated with Sub-PeV/PeV neutrinos from starburst galaxies, Astrophys. J., Volume 793 (2014), p. 131
[52] Time-dependent galactic winds. I. Structure and evolution of galactic outflows accompanied by cosmic ray acceleration, Astron. Astrophys., Volume 540 (2012)
Cited by Sources:
Comments - Policy