Active Galactic Nuclei can be copious extragalactic emitters of MeV–GeV–TeV γ rays, a phenomenon linked to the presence of relativistic jets powered by a super-massive black hole in the center of the host galaxy. Most of γ-ray emitting active galactic nuclei, with more than 1500 known at GeV energies, and more than 60 at TeV energies, are called “blazars”. The standard blazar paradigm features a jet of relativistic magnetized plasma ejected from the neighborhood of a spinning and accreting super-massive black hole, close to the observer direction. Two classes of blazars are distinguished from observations: the flat-spectrum radio-quasar class (FSRQ) is characterized by strong external radiation fields, emission of broad optical lines, and dust tori. The BL Lac class (from the name of one of its members, BL Lacertae) corresponds to weaker advection-dominated flows with γ-ray spectra dominated by the inverse Compton effect on synchrotron photons. This paradigm has been very successful for modeling the broadband spectral energy distributions of blazars. However, many fundamental issues remain, including the role of hadronic processes and the rapid variability of a few FSRQs and several BL Lac objects whose synchrotron spectrum peaks at UV or X-ray frequencies. A class of γ-ray-emitting radio galaxies, which are thought to be the misaligned counterparts of blazars, has emerged from the results of the Fermi-Large Area Telescope and of ground-based Cherenkov telescopes. Soft γ-ray emission has been detected from a few nearby Seyfert galaxies, though it is not clear whether those γ rays originate from the nucleus. Blazars and their misaligned counterparts make up most of the ≳100 MeV extragalactic γ-ray background (EGB), and are suspected of being the sources of ultra-high energy cosmic rays. The future “Cherenkov Telescope Array”, in synergy with the Fermi-Large Area Telescope and a wide range of telescopes in space and on the ground, will write the next chapter of blazar physics.
Les noyaux actifs de galaxie peuvent être de puissants émetteurs dans tout le domaine γ, du MeV au TeV, un phénomène dû à la présence de jets relativistes, en liaison avec un trou noir super-massif au centre de la galaxie hôte. La classe d'émetteurs de rayons γ la plus abondante parmi les noyaux actifs de galaxie, avec plus de 1500 sources établies aux énergies du GeV, et plus de 60 aux énergies du TeV, sont les « blazars ». Le paradigme actuel du blazar met en jeu un jet de plasma magnétisé, orienté à faible angle de la ligne de visée, et éjecté depuis le voisinage d'un trou noir accrétant et super-massif en rotation. Les observations permettent de distinguer deux types de blazars : les quasars radio à spectre plat (ou FSRQ) comprennent des champs de rayonnement externes puissants, des zones avec des raies d'émission optiques larges, et des tores de poussières. La classe des BL Lac (du nom d'un de ses membres, BL Lacertae) possède des flots d'accrétion plus faibles, dominés par l'advection, et dans lequel l'émission des rayons γ vient essentiellement de l'effet Compton inverse sur les photons synchrotron. Ce paradigme permet de modéliser l'émission des blazars sur tout le spectre électromagnétique. Cependant, beaucoup de problèmes fondamentaux restent sans réponse, notamment le rôle des processus hadroniques, et la variabilité très rapide de l'émission de certains objets BL Lac, ceux dont le spectre synchrotron émet le maximum de puissance dans les domaines UV et X. Les observations du satellite Fermi-LAT et celles des observatoires Tcherenkov au sol ont également mis en évidence une nouvelle classe de radio-galaxies émettrices de rayons γ, considérées comme les contreparties non alignées des blazars. On a aussi détecté l'émission de rayons γ de basse énergie provenant de galaxies de type Seyfert, mais il n'est pas encore sûr que cette émission vienne du noyau. Les blazars avec leurs contreparties non alignées sont à l'origine de la plus grande partie de l'émission gamma extragalactique diffuse au-dessus de 100 MeV, et sont soupçonnés d'être les sources des rayons cosmiques d'ultra-haute énergie. Le futur réseau Cherenkov Telescope Array (CTA), en synergie avec le télescope spatial Fermi et une grande variété de télescopes dans l'espace et au sol, écriront le prochain chapitre de la physique des blazars.
Mot clés : Noyaux actifs de galaxie, Rayons gamma, Trous noirs supermassifs
Charles Dennison Dermer 1; Berrie Giebels 2
@article{CRPHYS_2016__17_6_594_0, author = {Charles Dennison Dermer and Berrie Giebels}, title = {Active galactic nuclei at gamma-ray energies}, journal = {Comptes Rendus. Physique}, pages = {594--616}, publisher = {Elsevier}, volume = {17}, number = {6}, year = {2016}, doi = {10.1016/j.crhy.2016.04.004}, language = {en}, }
Charles Dennison Dermer; Berrie Giebels. Active galactic nuclei at gamma-ray energies. Comptes Rendus. Physique, Volume 17 (2016) no. 6, pp. 594-616. doi : 10.1016/j.crhy.2016.04.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.04.004/
[1] C. R. Physique, 17 (2016) no. 6, pp. 585-593 (this issue)
[2] et al. Astrophys. J., 799 (2015), p. 86
[3] Astrophys. J., 447 (1995), p. 103
[4] Publ. Astron. Soc. Pac., 107 (1995), p. 803
[5] Mon. Not. R. Astron. Soc., 167 (1974), p. 31P
[6] et al. Mon. Not. R. Astron. Soc., 420 (2012), p. 2899
[7]
, 2013 (PhD thesis pastel-00822242, version 1)[8] C. R. Physique, 16 (2015), p. 587
[9] et al. Nature, 275 (1978), p. 298
[10] C. R. Physique, 16 (2015), p. 600
[11] Space Sci. Rev., 35 (1983), p. 367
[12] Astron. Astrophys., 256 (1992)
[13] et al. Astrophys. J. Suppl. Ser., 123 (1999), p. 79
[14] C. R. Physique, 16 (2015), p. 610
[15] et al. Astrophys. J., 342 (1989), p. 379
[16] et al. Nature, 358 (1992), p. 477
[17] et al. Astrophys. J. Suppl. Ser., 94 (1994), p. 551
[18] et al. Astrophys. J. Suppl. Ser., 101 (1995), p. 259
[19] et al. Astrophys. J., 700 (2009), p. 597
[20] et al. Astrophys. J., 715 (2010), p. 429
[21] et al. (e) Astrophys. J., 743 (2011), p. 171
[22] et al. Astrophys. J., 810 (2015), p. 14
[23] High Energy Radiation from Black Holes, Princeton Series in Astrophysics, 2009
[24] et al. Astrophys. J., 289 (1985), p. 109
[25] Astrophys. J., 243 (1981), p. 700
[26] Rev. Mod. Phys., 56 (1984), p. 255
[27] et al. Astrophys. J. Lett., 400 (1992)
[28] et al. Astron. Astrophys., 523 (2010)
[29] et al. Astrophys. J. Lett., 709 (2010)
[30] et al. Science, 326 (2009), p. 1080
[31] et al. Nature, 462 (2009), p. 770
[32] C. R. Physique, 16 (2015), p. 686
[33] The Fourth Fermi Symposium, 2015
[34] et al. Astrophys. J., 764 (2013), p. 135
[35] et al. Astrophys. J., 780 (2014), p. 73
[36] et al. Astrophys. J. Lett., 733 (2011)
[37] et al. Astrophys. J., 720 (2010), p. 912
[38] Astrophys. J., 298 (1985), p. 114
[39] et al. Mon. Not. R. Astron. Soc., 441 (2014), p. 1899
[40] et al. Science, 328 (2010), p. 725
[41] et al. Astrophys. J., 720 (2010), p. 912
[42] Astron. J., 130 (2005), p. 1389
[43] et al. Astron. Astrophys., 538 (2012)
[44] et al. Astrophys. J. Lett., 723 (2010)
[45] Astron. Astrophys., 519 (2010)
[46] et al. Astrophys. J. Lett., 686 (2008)
[47] et al. Astron. Astrophys., 533 (2011)
[48] et al. Astrophys. J. Lett., 707 (2009)
[49] New Astron. Rev., 44 (2000), p. 381
[50] Astrophys. J., 564 (2002), p. 86
[51] Particles and Fields in Radio Galaxies Conference, 2001, pp. 250-294
[52] http://www.werner.lu/pn/phd/ngc6251.html
[53] et al. Astron. Astrophys., 403 (2003), p. 1
[54] et al. Astrophys. J. Suppl. Ser., 218 (2015), p. 23
[55] et al. Astrophys. J., 2 (2012), p. 746
[56] J. Aleksić, et al., Science 346, 1080.
[57] et al. Astrophys. J., 680 (2008), p. 911
[58] et al. Astron. Astrophys., 562 (2014)
[59] et al. Astrophys. J., 747 (2012), p. 104
[60] Active Galactic Nuclei (T.J.-L. Courvoisier; M. Mayor, eds.), Saas-Fee Advanced Courses, 1990
[61] C. R. Physique, 17 (2016) no. 6, pp. 632-648 (this issue)
[62] et al. Nature, 463 (2010), p. 919
[63] et al. Astrophys. J., 727 (2011), p. 129
[64] et al. Astrophys. J., 707 (2009), p. 55
[65] et al. Astrophys. J., 699 (2009), p. 31
[66] Astrophys. J., 640 (2006), p. 185
[67] Astron. Astrophys., 432 (2005), p. 401
[68] Astrophys. J. Lett., 594 (2003)
[69] Astrophys. J., 146 (1966), p. 634
[70] Astrophys. J., 186 (1973), p. 791
[71] et al. Astrophys. J., 411 (1993), p. 133
[72] et al. Astrophys. J., 733 (2011)
[73] et al. Astrophys. J., 733 (2011), p. 19
[74] et al. Astrophys. J., 766 (2013)
[75] Mon. Not. R. Astron. Soc., 431 (2013), p. 824
[76] Astron. Astrophys., 530 (2011)
[77] Mon. Not. R. Astron. Soc., 430 (2013), p. 1324
[78] Assessing the Short-Timescale Variability in LAT Blazars, Fermi Symposium, Nagoya, Japan, 2014
[79] Astrophys. J., 539 (2000), p. 9
[80] et al. Astrophys. J., 532 (2000), p. 816
[81] et al. Astrophys. J., 449 (1995)
[82] et al. Astrophys. J., 664 (2007)
[83] et al. Astrophys. J., 669 (2007), p. 862
[84] , American Institute of Physics Conference Series, vol. 1505 (2012), p. 514
[85] et al. Astron. Astrophys., 539 (2012)
[86] et al. Astron. Astrophys., 473 (2007), p. 25
[87] Mon. Not. R. Astron. Soc., 384 (2008)
[88] arXiv
, 2013 |[89] et al. Astrophys. J., 730 (2011)
[90] et al. Science, 320 (2008), p. 1752
[91] et al. Astron. Astrophys., 530 (2011)
[92] et al. Astrophys. J., 676 (2008)
[93] et al. Astrophys. J., 699 (2009), p. 817
[94] et al. Astrophys. J., 710 (2010), p. 1271
[95] et al. Astrophys. J., 721 (2010), p. 1383
[96] et al. Astrophys. J., 476 (1997), p. 692
[97] et al. Astrophys. J., 722 (2010), p. 520
[98] Astrophys. J., 717 (2010)
[99] Mon. Not. R. Astron. Soc., 417 (2011)
[100] Astrophys. J., 771 (2013)
[101] Astrophys. J., 782 (2014), p. 82
[102] Astrophys. J., 545 (2000), p. 107
[103] et al. Nature, 452 (2008), p. 966
[104] et al. Astrophys. J., 710 (2010)
[105] et al. Astrophys. J., 726 (2011)
[106] et al., 2013 | arXiv
[107] Astrophys. J., 722 (2010)
[108] et al. Astrophys. J. Suppl. Ser., 194 (2011), p. 29
[109] Astrophys. J., 714 (2010)
[110] et al. Astrophys. J., 790 (2014), p. 45
[111] et al., 2015 | arXiv
[112] Mon. Not. R. Astron. Soc., 425 (2012), p. 2519
[113] et al. Astrophys. J., 771 (2013), p. 57
[114] et al. J. Instrum., 8 (2013)
[115] et al. Mon. Not. R. Astron. Soc., 299 (1998), p. 433
[116] Astrophys. J., 740 (2011), p. 98
[117] et al. Astrophys. J., 696 (2009), p. 150
[118] et al. Astrophys. J., 754 (2012), p. 114
[119] Astrophys. J., 295 (1985), p. 358
[120] et al. Mon. Not. R. Astron. Soc., 301 (1998), p. 451
[121] Astrophys. J., 763 (2013), p. 134
[122] Mon. Not. R. Astron. Soc., 396 (2009), p. 10
[123] Mon. Not. R. Astron. Soc., 414 (2011), p. 2674
[124] et al. Mon. Not. R. Astron. Soc., 402 (2010), p. 497
[125] et al. Astrophys. J., 657 (2007), p. 706
[126] et al. Astrophys. J., 716 (2010), p. 30
[127] Astrophys. J., 809 (2015), p. 174
[128] Astron. Astrophys., 422 (2004), p. 103
[129] Rep. Prog. Phys., 64 (2000), p. 429
[130] Mem. Soc. Astron. Ital., 86 (2015), p. 13
[131] Relativistic Jets from Active Galactic Nuclei, Wiley, Berlin, 2012
[132] et al. Astrophys. J., 736 (2011), p. 131
[133] Mon. Not. R. Astron. Soc., 402 (2010), p. 1649
[134] arXiv
, 2010 |[135] Mon. Not. R. Astron. Soc., 420 (2012), p. 604
[136] arXiv
, 2012 |[137] Mon. Not. R. Astron. Soc., 425 (2012), p. 2519
[138] Mon. Not. R. Astron. Soc., 423 (2012), p. 1707
[139] et al. Astrophys. J., 601 (2004), p. 151
[140] Astrophys. J., 621 (2005), p. 176
[141] Astropart. Phys., 33 (2010), p. 81
[142] Phys. Rev. Lett., 104 (2010)
[143] et al. Phys. Rev. Lett., 113 (2014)
[144] et al. Astron. Astrophys., 566 (2014)
[145] Mon. Not. R. Astron. Soc., 332 (2002), p. 215
[146] Astropart. Phys., 18 (2003), p. 593
[147] Phys. Rev. Lett., 87 (2001)
[148] J. High Energy Astrophys., 3 (2014), p. 29
[149] Mon. Not. R. Astron. Soc., 387 (2008), p. 1669
[150] Phys. Rev. D, 90 (2014)
[151] Astrophys. J., 768 (2013), p. 54
[152] Mon. Not. R. Astron. Soc., 448 (2015), p. 910
[153] Mon. Not. R. Astron. Soc., 448 (2015), p. 2412
[154] C. R. Physique, 17 (2016) no. 6, pp. 649-662 (this issue)
[155] Astrophys. J., 627 (2005), p. 89
[156] et al. Astrophys. J., 722 (2010)
[157] Astrophys. J., 733 (2011), p. 66
[158] et al. Astrophys. J., 800 (2015)
[159] et al. Astrophys. J., 751 (2012), p. 108
[160] Astrophys. J., 736 (2011), p. 40
[161] et al. Exp. Astron., 32 (2011), p. 193
[162] C. R. Physique, 17 (2016) no. 6, pp. 663-678 (this issue)
[163] http://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm (Fermi-LAT performance at)
[164] New Astron. Rev., 48 (2004), p. 193
[165] C. R. Physique, 17 (2016) no. 6, pp. 617-631 (this issue)
[166] et al. Astrophys. J., 764 (2013), p. 119
[167] Astron. Astrophys., 554 (2013), p. 75
[168] et al. Astrophys. J. Suppl. Ser., 209 (2013), p. 34
[169] et al. Astrophys. J. Suppl., 222 (2016), p. 5
[170] C. R. Physique, 15 (2014) no. 4, pp. 297-384
Cited by Sources:
Comments - Policy