[L'avenir de l'astronomie gamma]
Le domaine de l'astronomie gamma a connu des progrès impressionnants au cours de la dernière décennie. Grâce à l'avènement d'une nouvelle génération de télescopes Tcherenkov (H.E.S.S., MAGIC, VERITAS) et grâce au lancement du satellite Fermi-LAT, plusieurs milliers de sources de rayons gamma sont connues aujourd'hui, révélant une ubiquité inattendue des processus d'accélération de particules dans l'Univers. Toutefois, des questions scientifiques majeures restent en suspens, telles que l'identification de la nature de la matière sombre, la découverte et la compréhension des sources de rayons cosmiques, ou la compréhension des processus d'accélération de particules qui sont à l'œuvre dans les différents astres. Cet article présente quelques-uns des instruments et des concepts de mission qui vont relever ces défis au cours des prochaines décennies.
The field of gamma-ray astronomy has experienced impressive progress over the last decade. Thanks to the advent of a new generation of imaging air Cherenkov telescopes (H.E.S.S., MAGIC, VERITAS) and thanks to the launch of the Fermi-LAT satellite, several thousand gamma-ray sources are known today, revealing an unexpected ubiquity of particle acceleration processes in the Universe. Major scientific challenges are still ahead, such as the identification of the nature of Dark Matter, the discovery and understanding of the sources of cosmic rays, or the comprehension of the particle acceleration processes that are at work in the various objects. This paper presents some of the instruments and mission concepts that will address these challenges over the next decades.
Mot clés : Rayons gamma, Astronomie, Matière sombre, Rayons cosmiques, Accélération de particules
Jürgen Knödlseder 1
@article{CRPHYS_2016__17_6_663_0, author = {J\"urgen Kn\"odlseder}, title = {The future of gamma-ray astronomy}, journal = {Comptes Rendus. Physique}, pages = {663--678}, publisher = {Elsevier}, volume = {17}, number = {6}, year = {2016}, doi = {10.1016/j.crhy.2016.04.008}, language = {en}, }
Jürgen Knödlseder. The future of gamma-ray astronomy. Comptes Rendus. Physique, Volume 17 (2016) no. 6, pp. 663-678. doi : 10.1016/j.crhy.2016.04.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.04.008/
[1] Phys. Rev. Lett., 16 (1966), p. 252
[2] Astrophys. J. Suppl. Ser., 92 (1994), p. 327
[3] et al. Astrophys. J. Suppl. Ser., 86 (1993), p. 657
[4] et al. Astrophys. J., 697 (2009), p. 1071
[5] Nucl. Phys. B, Proc. Suppl., 134 (2004), p. 72
[6] et al. Astron. Astrophys., 457 (2006), p. 899
[7] et al. Astropart. Phys., 35 (2012), p. 435
[8] et al. Astropart. Phys., 25 (2006), p. 391
[9] et al. Astrophys. J., 595 (2003), p. 803
[10] et al. Astron. Astrophys., 390 (2002), p. 39
[11] C. R. Physique, 16 (2015), p. 600
[12] C. R. Physique, 16 (2015), p. 610
[13] Phys. Rev. Lett., 1 (1958), p. 205
[14] et al. J. Geophys. Res., 67 (1962), p. 4878
[15] Phys. Rev. Lett., 8 (1962), p. 106
[16] et al. Astrophys. J., 342 (1989), p. 379
[17] et al. Astrophys. J. Suppl. Ser., 218 (2015), p. 23
[18] et al. Phys. Rev. D, 87 (2013)
[19] et al. Phys. Rep., 405 (2005), p. 279
[20] C. R. Physique, 17 (2016) ( in this issue ) | DOI
[21] C. R. Physique, 17 (2016) ( in this issue ) | DOI
[22] et al. Phys. Rev. Lett., 107 (2011)
[23] et al., 2015 | arXiv
[24] Phys. Z., 12 (1911), p. 998
[25] Adv. Space Res., 53 (2014), p. 1476
[26] Int. J. Mod. Phys. D, 23 (2014), p. 1430013
[27] C. R. Physique, 16 (2015), p. 674
[28] Astropart. Phys., 43 (2013), p. 71
[29] et al., Astrophys. Space Sci. Proc., vol. 34, 2012, p. 7 (in: Cosmic Rays in Star-Forming Environments)
[30] et al. Astron. Astrophys., 658 (2014)
[31] et al. Nature, 439 (2006), p. 695
[32] et al. (in: Proc. 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil, 2–9 July 2013) | arXiv
[33] et al. Astrophys. J., 763 (2013), p. 98
[34] et al. Publ. Astron. Soc. Jpn., 62 (2010), p. 769
[35] et al. (in: SF2A 2010) | arXiv
[36] et al. Mon. Not. R. Astron. Soc., 396 (2009), p. 1629
[37] Annu. Rev. Astron. Astrophys., 30 (1992), p. 575
[38] C. R. Physique, 17 (2016) ( in this issue ) | DOI
[39] Astron. Astrophys., 564 (2014)
[40] Mon. Not. R. Astron. Soc., 429 (2013), p. 70
[41] et al. Astron. Astrophys., 517 (2010)
[42] et al. Nucl. Phys. B, Proc. Suppl., 256 (2014), p. 9
[43] Astrophys. J. Lett., 684 (2008)
[44] C. R. Physique, 17 (2016) ( in this issue ) | DOI
[45] et al. Astrophys. J., 750 (2012), p. 118
[46] C. R. Physique, 16 (2015), p. 641
[47] et al. Astrophys. J., 456 (1996), p. 422
[48] et al. Science, 334 (2011), p. 1103
[49] et al. Astrophys. J., 790 (2014), p. 152
[50] et al. Science, 347 (2015), p. 406
[51] Rep. Prog. Phys., 77 (2014), p. 6
[52] C. R. Physique, 17 (2016) ( in this issue ) | DOI
[53] et al. Science, 346 (2014), p. 1080
[54] Proc. IAU, 9 (2013) no. S304, p. 426
[55] C. R. Physique, 16 (2015), p. 661
[56] Astron. Astrophys., 558 (2013)
[57] et al. Astron. Astrophys. Rev., 20 (2012), p. 54
[58] et al. Astron. Astrophys., 526 (2011), p. 57
[59] et al. Astron. Astrophys., 544 (2012), p. 98
[60] Astrophys. J., 663 (2007)
[61] C. R. Physique, 16 (2015), p. 686
[62] SPIE J., 9144 (2014), p. 20
[63] et al. Astropart. Phys., 59 (2014), p. 18
[64] S. Son, et al., in: Neutron Imaging Camera, IEEE/NSS, Knoxville, TN, N11-3, 2010.
[65] http://astrogam.iaps.inaf.it
[66] V. Tatischeff, private communication.
[67] http://calet.phys.lsu.edu/
[68] J. Phys. Conf. Ser., 409 (2013)
[69] 33rd International Cosmic Ray Conference, 2013
[70] http://dpnc.unige.ch/dampe/
[71] 33rd International Cosmic Ray Conference, 2013, p. 868
[72] Phys. Lett. B, 715 (2012), p. 35
[73] http://gamma400.lebedev.ru/
[74] et al. 33rd International Cosmic Ray Conference, 2013 | arXiv
[75] http://llr.in2p3.fr/~dbernard/polar/HARPO_En.html
[76] et al., 2014 (SPIE) | arXiv
[77] NIM A, 718 (2012), p. 395
[78] et al. 15–17 Dec. 2014 (2015) | arXiv
[80] et al. SPIE J., 9144 (2014) | arXiv
[81] et al., 2014 (SPIE) | arXiv
[82] Astropart. Phys., 13 (2000), p. 75
[83] Proc. of the 10th Latin American Symposium on Nucl. Phys. and Applications, 2013 | arXiv
[84] et al. Nucl. Phys. B, Proc. Suppl., 165 (2007), p. 110
[85] et al. (in: Proc. of the Nuclear Science Symposium and Medical Imaging Conference 2013) | arXiv
[86] https://www.cta-observatory.org/
[87] et al. Astropart. Phys., 43 (2013), p. 3
[88] http://www.hawc-observatory.org/
[89] Int. J. Mod. Phys. Conf. Ser., 28 (2014)
[90] Proc. 33rd International Cosmic Ray Conference, 2013 | arXiv
[91] J. Phys. Conf. Ser., 375 (2012)
[92] et al. Astropart. Phys., 56 (2014), p. 42
[93] http://taiga-experiment.info/taiga-detector
[94] et al. NIM A, 639 (2011), p. 42
[95] et al. International Conference on Instrumentation for Colliding Beam Physics, 2014
[96] et al. Proc. 33rd International Cosmic Ray Conference, 2013, p. 328
[97] et al. Astropart. Phys., 54 (2014), p. 86
[98] et al. Proc. 32rd International Cosmic Ray Conference, vol. 9, 2011, p. 803
[99] et al., SF2A (2012), p. 571
[100] et al. Astron. Astrophys., 411 (2003)
[101] NIM A, 701 (2013), p. 225
[102] et al. Astrophys. J. Suppl. Ser., 203 (2012), p. 4
[103] R. Sparvoli, in: 12th AGILE Science Workshop, Rome, Italy, 8–9 May 2014.
[104] et al. 33rd International Cosmic Ray Conference, 2013
[105] et al. 5th Workshop on Air Shower Detection at High Altitude, 2014
[106] 5th Workshop on Air Shower Detection at High Altitude, 2014
Cité par Sources :
Commentaires - Politique