Comptes Rendus
Gamma-ray astronomy / Astronomie des rayons gamma – Volume 2
High-energy gamma-ray sources of cosmological origin
Comptes Rendus. Physique, Volume 17 (2016) no. 6, pp. 649-662.

The current generation of instruments in gamma-ray astrophysics launched a new era in the search for a dark matter signal in the high-energy sky. Such searches are said indirect, in the sense that the presence of a dark matter particle is inferred from the detection of products of its pair-annihilation or decay. They have recently started to probe the natural domain of existence for weakly interacting massive particles (WIMPs), the favorite dark matter candidates today. In this article, we review the basic framework for indirect searches and we present a status of current limits obtained with gamma-ray observations. We also devote a section to another possible class of cosmological gamma-ray sources, primordial black holes, also considered as a potential constituent of dark matter.

La génération actuelle des détecteurs de rayons gamma d'origine astrophysique a ouvert une nouvelle ère dans la recherche d'un signal à haute énergie lié à la présence de particules de matière noire. Ces recherches dites indirectes, car on détecte les produits d'annihilation de deux de ces particules ou de leur désintégration, ont récemment commencé à sonder le domaine naturel des paramètres de l'hypothèse favorite : l'existence de particules de grande masse soumises seulement à l'interaction faible (weakly interacting massive particles ou WIMP). Dans cet article, nous rappelons le cadre de base des recherches indirectes, puis nous présentons l'ensemble des limites actuelles obtenues avec les observations gamma. Nous consacrons également une section aux trous noirs primordiaux, une autre classe de sources gamma d'origine cosmologique, discutée également comme candidat « matière » noire dans la littérature.

Published online:
DOI: 10.1016/j.crhy.2016.04.007
Keywords: Gamma rays, Dark matter, Primordial black holes
Mot clés : Rayons gamma, Matière noire, Trous noirs primordiaux

Pierre Brun 1; Johann Cohen-Tanugi 2

1 IRFU, CEA Saclay, 91191 Gif-sur-Yvette, France
2 LUPM, Université de Montpellier et CNRS/IN2P3, 34095 Montpellier cedex 05, France
@article{CRPHYS_2016__17_6_649_0,
     author = {Pierre Brun and Johann Cohen-Tanugi},
     title = {High-energy gamma-ray sources of cosmological origin},
     journal = {Comptes Rendus. Physique},
     pages = {649--662},
     publisher = {Elsevier},
     volume = {17},
     number = {6},
     year = {2016},
     doi = {10.1016/j.crhy.2016.04.007},
     language = {en},
}
TY  - JOUR
AU  - Pierre Brun
AU  - Johann Cohen-Tanugi
TI  - High-energy gamma-ray sources of cosmological origin
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 649
EP  - 662
VL  - 17
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.04.007
LA  - en
ID  - CRPHYS_2016__17_6_649_0
ER  - 
%0 Journal Article
%A Pierre Brun
%A Johann Cohen-Tanugi
%T High-energy gamma-ray sources of cosmological origin
%J Comptes Rendus. Physique
%D 2016
%P 649-662
%V 17
%N 6
%I Elsevier
%R 10.1016/j.crhy.2016.04.007
%G en
%F CRPHYS_2016__17_6_649_0
Pierre Brun; Johann Cohen-Tanugi. High-energy gamma-ray sources of cosmological origin. Comptes Rendus. Physique, Volume 17 (2016) no. 6, pp. 649-662. doi : 10.1016/j.crhy.2016.04.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.04.007/

[1] D. Horns; A. Jacholkowska Gamma rays as probes of the Universe, C. R. Physique, Volume 17 (2016) no. 6, pp. 632-648 ( in this issue )

[2] J. Conrad; J. Cohen-Tanugi; L.E. Strigari WIMP searches with gamma rays in the Fermi era: challenges, methods and results, J. Exp. Theor. Phys., Volume 148 (2015) no. 12 | arXiv

[3] J.H. MacGibbon; B.J. Carr Cosmic rays from primordial black holes, Astrophys. J., Volume 371 (1991), pp. 447-469 http://adsabs.harvard.edu/abs/1991ApJ...371..447M

[4] D.N. Page; S.W. Hawking Gamma rays from primordial black holes, Astrophys. J., Volume 206 (1976) | DOI

[5] B.J. Carr; K. Kohri; Y. Sendouda; J. Yokoyama New cosmological constraints on primordial black holes, Phys. Rev. D, Volume 81 (2010) no. 10 | arXiv

[6] D. Thompson C. R. Physique, 16 (2015), pp. 600-609

[7] M. Su; C. van Eldik C. R. Physique, 16 (2015), pp. 686-703

[8] R. Lehoucq; M. Cassé; J.-M. Casandjian; I. Grenier New constraints on the primordial black hole number density from galactic γ-ray astronomy, Astron. Astrophys., Volume 502 (2009), pp. 37-43 | arXiv

[9] M. de Naurois; D. Mazin C. R. Physique, 16 (2015), pp. 610-627

[10] E.T. Linton; R.W. Atkins; H.M. Badran; G. Blaylock; P.J. Boyle; J.H. Buckley; K.L. Byrum; D.A. Carter-Lewis; O. Celik; Y.C.K. Chow; P. Cogan; M.K. Daniel; C. Dowdall; A.D. Falcone; D.J. Fegan; S.J. Fegan; J.P. Finley; P. Fortin; K.J. Guiterrez; J. Hall; D. Hanna; J. Holder; D. Horan; S.B. Hughes; T.B. Humensky; I. Jung; G.E. Kenny; M. Kertzman; D.B. Kieda; J. Kildea; J. Knapp; H. Krawczynski; M.J. Lang; S. LeBohec; G. Maier; P. Moriarty; R.A. Ong; J.S. Perkins; F. Pizlo; M. Pohl; J. Quinn; K. Ragan; P.F. Rebillot; P.T. Reynolds; G.H. Sembroski; D. Steele; S.P. Swordy; L. Valcarcel; S.P. Wakely; T.C. Weekes; R.J. White A new search for primordial black hole evaporations using the Whipple gamma-ray telescope, J. Cosmol. Astropart. Phys., Volume 2006 (2006) no. 1 http://iopscience.iop.org/1475-7516/2006/01/013

[11] G. Tešić; for the VERITAS Collaboration Searching for primordial black holes with the VERITAS gamma-ray experiment, J. Phys. Conf. Ser., Volume 375 (2012) no. 5 http://stacks.iop.org/1742-6596/375/i=5/a=052024?key=crossRef.0dcc5ca50a1d6c414fadd6ef9e6b8ddb

[12] J.-F. Glicenstein; A. Barnacka; M. Vivier; T. Herr; for the H.E.S.S. Collaboration Limits on primordial black hole evaporation with the H.E.S.S. array of Cherenkov telescopes http://adsabs.harvard.edu/abs/2013arXiv1307.4898G | arXiv

[13] A. Abdo; A. Abeysekara; R. Alfaro; B. Allen; C. Alvarez et al. Milagro limits and HAWC sensitivity for the rate-density of evaporating primordial black holes, Astropart. Phys., Volume 64 (2014), pp. 4-12 | arXiv

[14] J. Knödlseder The future of gamma-ray astronomy, C. R. Physique, Volume 17 (2016) no. 6, pp. 663-678 ( in this issue )

[15] W.H. Press; J.E. Gunn Method for detecting a cosmological density of condensed objects, Astrophys. J., Volume 185 (1973), p. 397 http://adsabs.harvard.edu/absdoi/10.1086/152430

[16] F. Piron Gamma-ray bursts at high and very high energies, C. R. Physique, Volume 17 (2016) no. 6, pp. 617-631 ( in this issue )

[17] M.A. Abramowicz; J.K. Becker; P.L. Biermann; A. Garzilli; F. Johansson; L. Qian No observational constraints from hypothetical collisions of hypothetical dark halo primordial black holes with galactic objects, Astrophys. J., Volume 705 (2009), pp. 659-669 http://adsabs.harvard.edu/abs/2009ApJ...705..659A

[18] G.F. Marani; R.J. Nemiroff; J.P. Norris; K. Hurley; J.T. Bonnell Gravitationally lensed gamma-ray bursts as probes of dark compact objects, Astrophys. J., Volume 512 (1999) no. 1, p. L13-L16 http://stacks.iop.org/1538-4357/512/i=1/a=L13

[19] R.J. Nemiroff; J.P. Norris; W.A.D.T. Wickramasinghe; J.M. Horack; C. Kouveliotou; G.J. Fishman; C.A. Meegan; R.B. Wilson; W.S. Paciesas Searching gamma-ray bursts for gravitational lensing echoes – implications for compact dark matter, Astrophys. J., Volume 414 (1993), pp. 36-40 http://adsabs.harvard.edu/abs/1993ApJ...414...36N

[20] C. Alcock; R.A. Allsman; D.R. Alves; T.S. Axelrod; A.C. Becker; D.P. Bennett; K.H. Cook; N. Dalal; A.J. Drake; K.C. Freeman; M. Geha; K. Griest; M.J. Lehner; S.L. Marshall; D. Minniti; C.A. Nelson; B.A. Peterson; P. Popowski; M.R. Pratt; P.J. Quinn; C.W. Stubbs; W. Sutherland; A.B. Tomaney; T. Vandehei; D. Welch The MACHO project: microlensing results from 5.7 years of large Magellanic Cloud observations, Astrophys. J., Volume 542 (2000) no. 1, pp. 281-307 | DOI

[21] P. Tisserand; L.L. Guillou; C. Afonso; J.N. Albert; J. Andersen; R. Ansari; É. Aubourg; P. Bareyre; J.P. Beaulieu; X. Charlot; C. Coutures; R. Ferlet; P. Fouqué; J.F. Glicenstein; B. Goldman; A. Gould; D. Graff; M. Gros; J. Haissinski; C. Hamadache; J. de Kat; T. Lasserre; É. Lesquoy; C. Loup; C. Magneville; J.B. Marquette; É. Maurice; A. Maury; A. Milsztajn; M. Moniez; N. Palanque-Delabrouille; O. Perdereau; Y.R. Rahal; J. Rich; M. Spiro; A. Vidal-Madjar; L. Vigroux; S. Zylberajch Limits on the macho content of the galactic halo from the EROS-2 survey of the Magellanic Clouds, Astron. Astrophys., Volume 469 (2007) no. 2, pp. 387-404 | DOI

[22] F. Capela; M. Pshirkov; P. Tinyakov Constraints on primordial black holes as dark matter candidates from capture by neutron stars, Phys. Rev. D, Volume 87 (2013) http://adsabs.harvard.edu/abs/2013PhRvD..87l3524C

[23] P. Pani; A. Loeb Tidal capture of a primordial black hole by a neutron star: implications for constraints on dark matter, J. Cosmol. Astropart. Phys., Volume 2014 (2014) no. 6 http://adsabs.harvard.edu/abs/2014JCAP...06..026P

[24] A. Barnacka; J.-F. Glicenstein; R. Moderski New constraints on primordial black holes abundance from femtolensing of gamma-ray bursts, Phys. Rev. D, Volume 86 (2012) no. 4 http://link.aps.org/absdoi/10.1103/PhysRevD.86.043001

[25] B.W. Lee; S. Weinberg Cosmological lower bound on heavy-neutrino masses, Phys. Rev. Lett., Volume 39 (1977), pp. 165-168

[26] K. Griest; M. Kamionkowski Unitarity limits on the mass and radius of dark-matter particles, Phys. Rev. Lett., Volume 64 (1990), pp. 615-618

[27] S.P. Martin A supersymmetry primer (Gordon L. Kane, ed.), Perspectives on Supersymmetry, Advanced Series on Directions in High Energy Physics, vol. 18, World Scientific, 1998, pp. 1-98 | arXiv

[28] G. Servant; T.M.P. Tait Is the lightest Kaluza–Klein particle a viable dark matter candidate?, Nucl. Phys. B, Volume 650 (2003), pp. 391-419 | arXiv

[29] K. Agashe; G. Servant Warped unification, proton stability, and dark matter, Phys. Rev. Lett., Volume 93 (2004) no. 23 | arXiv

[30] P.J. Fox; R. Harnik; J. Kopp; Y. Tsai Missing energy signatures of dark matter at the LHC, Phys. Rev. D, Volume 85 (2012) | arXiv

[31] G. Aad et al. Search for dark matter candidates and large extra dimensions in events with a photon and missing transverse momentum in pp collision data at s=7 TeV with the ATLAS detector, Phys. Rev. Lett., Volume 110 (2013) no. 1 | arXiv

[32] Z. Ahmed et al. Dark matter search results from the CDMS II experiment, Science, Volume 327 (2010), pp. 1619-1621 | arXiv

[33] E. Aprile et al. Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett., Volume 109 (2012) | arXiv

[34] J.F. Navarro; C.S. Frenk; S.D. White A universal density profile from hierarchical clustering, Astrophys. J., Volume 490 (1997), pp. 493-508 | arXiv

[35] J. Diemand; M. Kuhlen; P. Madau Formation and evolution of galaxy dark matter halos and their substructure, Astrophys. J., Volume 667 (2007), pp. 859-877 | arXiv

[36] A.W. Graham; D. Merritt; B. Moore; J. Diemand; B. Terzic Empirical models for dark matter halos. I. Nonparametric construction of density profiles and comparison with parametric models, Astron. J., Volume 132 (2006), pp. 2685-2700 | arXiv

[37] J.F. Navarro; A. Ludlow; V. Springel; J. Wang; M. Vogelsberger et al. The diversity and similarity of cold dark matter halos, Mon. Not. R. Astron. Soc., Volume 402 (2010), p. 21 | arXiv

[38] J.N. Bahcall; R. Soneira The Universe at faint magnitudes. 2. Models for the predicted star counts, Astrophys. J. Suppl., Volume 44 (1980), pp. 73-110

[39] M. Urban; A. Bouquet; B. Degrange; P. Fleury; J. Kaplan; A. Melchior; E. Paré Searching for TeV dark matter by atmospheric Čerenkov techniques, Phys. Lett. B, Volume 293 (1992) no. 1–2, pp. 149-156 http://linkinghub.elsevier.com/retrieve/pii/037026939291494T

[40] L. Bergström; P. Ullio; J.H. Buckley Observability of γ rays from dark matter neutralino annihilations in the Milky Way halo, Astropart. Phys., Volume 9 (1998) no. 2, pp. 137-162 http://linkinghub.elsevier.com/retrieve/pii/S0927650598000152

[41] H.E.S.S. Collaboration; F. Aharonian et al. H.E.S.S. observations of the Galactic Center region and their possible dark matter interpretation, Phys. Rev. Lett., Volume 97 (2006) | arXiv

[42] T. Daylan; D.P. Finkbeiner; D. Hooper; T. Linden; S.K.N. Portillo; N.L. Rodd; T.R. Slatyer The characterization of the gamma-ray signal from the central Milky Way: a compelling case for annihilating dark matter http://adsabs.harvard.edu/abs/2014arXiv1402.6703D (unpublished)

[43] F. Stoehr; S.D.M. White; V. Springel; G. Tormen; N. Yoshida Dark matter annihilation in the halo of the Milky Way, Mon. Not. R. Astron. Soc., Volume 345 (2003), pp. 1313-1322 | arXiv

[44] H.E.S.S. Collaboration; A. Abramowski et al. Search for a dark matter annihilation signal from the galactic center halo with H.E.S.S., Phys. Rev. Lett., Volume 106 (2011) no. 16 http://link.aps.org/absdoi/10.1103/PhysRevLett.106.161301

[45] Fermi-LAT Collaboration; M. Ackermann et al. Constraints on the galactic halo dark matter from Fermi-LAT diffuse measurements, Astrophys. J., Volume 761 (2012) no. 2, p. 91 http://iopscience.iop.org/0004-637X/761/2/91

[46] G.A. Gómez-Vargas; M.A. Sánchez-Conde; J.-H. Huh; M. Peiró; F. Prada; A. Morselli; A. Klypin; D.G. Cerdeño; Y. Mambrini; C. Muñoz Constraints on WIMP annihilation for contracted dark matter in the inner Galaxy with the Fermi-LAT, J. Cosmol. Astropart. Phys., Volume 2013 (2013) no. 10 http://adsabs.harvard.edu/abs/2013JCAP...10..029G

[47] Fermi-LAT Collaboration; A. Abdo et al. Fermi large area telescope first source catalog, Astrophys. J. Suppl., Volume 188 (2010), pp. 405-436 | arXiv

[48] A. Sternberg; C.F. McKee; M.G. Wolfire Atomic hydrogen gas in dark-matter minihalos and the compact high velocity clouds, Astrophys. J. Suppl., Volume 143 (2002), pp. 419-454 | arXiv

[49] P. Brun; E. Moulin; J. Diemand; J.-F. Glicenstein Searches for dark matter subhaloes with wide-field Cherenkov telescope surveys, Phys. Rev. D, Volume 83 (2011) no. 1 | arXiv

[50] A. Drlica-Wagner; G.A. Gómez-Vargas; J.W. Hewitt; T. Linden; L. Tibaldo Searching for dark matter annihilation in the smith high-velocity cloud, Astrophys. J., Volume 790 (2014) no. 1, p. 24 http://stacks.iop.org/0004-637X/790/i=1/a=24

[51] Fermi-LAT Collaboration; M. Ackermann et al. Search for dark matter satellites using the Fermi-LAT, Astrophys. J., Volume 747 (2012), p. 121 | arXiv

[52] J. Diemand; M. Kuhlen; P. Madau; M. Zemp; B. Moore; D. Potter; J. Stadel Clumps and streams in the local dark matter distribution, Nature, Volume 454 (2008), pp. 735-738 | arXiv

[53] M.R. Buckley; D. Hooper Dark matter subhalos in the Fermi first source catalog, Phys. Rev. D, Volume 82 (2010) no. 6 | arXiv

[54] Fermi-LAT Collaboration; A.A. Abdo et al. Observations of Milky Way dwarf spheroidal galaxies with the Fermi-large area telescope detector and constraints on dark matter models, Astrophys. J., Volume 712 (2010), pp. 147-158 | arXiv

[55] VERITAS Collaboration; V.A. Acciari et al. VERITAS search for VHE gamma-ray emission from dwarf spheroidal galaxies, Astrophys. J., Volume 720 (2010), pp. 1174-1180 http://adsabs.harvard.edu/abs/2010ApJ...720.1174A

[56] MAGIC Collaboration; J. Aleksić et al. Searches for dark matter annihilation signatures in the Segue 1 satellite galaxy with the MAGIC-I telescope, J. Cosmol. Astropart. Phys., Volume 2011 (2011) no. 6 http://adsabs.harvard.edu/abs/2011JCAP...06..035A

[57] Fermi-LAT Collaboration; M. Ackermann et al. Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi large area telescope, Phys. Rev. Lett., Volume 107 (2011) no. 24 | arXiv

[58] Fermi-LAT Collaboration; M. Ackermann et al. Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi large area telescope, Phys. Rev. D, Volume 89 (2014) no. 4 http://link.aps.org/absdoi/10.1103/PhysRevD.89.042001

[59] B. Anderson; J. Chiang; J. Cohen-Tanugi; J. Conrad; A. Drlica-Wagner; M. Llena Garde; Stephan Zimmer; for the Fermi LAT Collaboration Using likelihood for Combined Data Set Analysis, 2015 (2014 Fermi Symposium Proceedings – eConf C14102.1) | arXiv

[60] H.E.S.S. Collaboration; A. Abramowski et al. Search for dark matter annihilation signatures in H.E.S.S. observations of dwarf spheroidal galaxies, Phys. Rev. D, Volume 90 (2014) | arXiv

[61] Fermi-LAT Collaboration; M. Ackermann et al. Searching for dark matter annihilation from Milky Way dwarf spheroidal galaxies with six years of Fermi-LAT data, Phys. Rev. Lett., Volume 115 (2015) | arXiv

[62] H.E.S.S. Collaboration; F. Aharonian et al. Observations of the Sagittarius dwarf galaxy by the HESS experiment and search for a dark matter signal, Astropart. Phys., Volume 29 (2008), pp. 55-62 http://adsabs.harvard.edu/abs/2008APh....29...55A

[63] G. Lamanna; C. Farnier; A. Jacholkowska; M. Kieffer; C. Trichard Sagittarius dwarf spheroidal galaxy observed by H.E.S.S., Rio de Janeiro, Brazil (2013), p. 5 | arXiv

[64] MAGIC Collaboration; J. Aleksić et al. Optimized dark matter searches in deep observations of Segue 1 with MAGIC, J. Cosmol. Astropart. Phys., Volume 2014 (2014) no. 2 http://adsabs.harvard.edu/abs/2013arXiv1312.1535A | arXiv

[65] VERITAS Collaboration; E. Aliu et al. VERITAS deep observations of the dwarf spheroidal galaxy Segue 1, Phys. Rev. D, Volume 85 (2012) http://adsabs.harvard.edu/abs/2012PhRvD..85f2001A

[66] Fermi-LAT Collaboration; M. Ackermann et al. The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV, Astrophys. J., Volume 799 (2015) no. 1, p. 86 http://iopscience.iop.org/0004-637X/799/1/86

[67] M. Di Mauro; F. Donato The composition of the Fermi-LAT IGRB intensity: emission from extragalactic point sources and dark matter annihilations, Phys. Rev. D, Volume 91 (2015) no. 12

[68] Fermi-LAT Collaboration Limits on dark matter annihilation signals from the Fermi LAT 4-year measurement of the isotropic gamma-ray background, J. Cosmol. Astropart. Phys., Volume 2015 (2015) no. 09 http://adsabs.harvard.edu/abs/2015arXiv150105464T

[69] M. Ajello; D. Gasparrini; M. Sanchez-Conde; G. Zaharijas; M. Gustafsson; J. Cohen-Tanugi; C.D. Dermer; Y. Inoue; D. Hartmann; M. Ackermann; K. Bechtol; A. Franckowiak; A. Reimer; R.W. Romani; A.W. Strong The origin of the extragalactic gamma-ray background and implications for dark-matter annihilation, Astrophys. J. Lett., Volume 800 (2015) http://adsabs.harvard.edu/abs/2015arXiv150105301A

[70] VERITAS Collaboration; T. Arlen et al. Constraints on cosmic rays, magnetic fields, and dark matter from gamma-ray observations of the coma cluster of galaxies with VERITAS and Fermi, Astrophys. J., Volume 757 (2012), p. 123 http://adsabs.harvard.edu/abs/2012ApJ...757..123A

[71] H.E.S.S. Collaboration; A. Abramowski; et al.; H.E.S.S. Collaboration; A. Abramowski et al. Search for dark matter annihilation signals from the fornax galaxy cluster with H.E.S.S., Astrophys. J., Volume 750 (2012), p. 123 http://adsabs.harvard.edu/abs/2014ApJ...783...63A (Erratum)

[72] Fermi-LAT Collaboration; M. Ackermann et al. Constraints on dark matter annihilation in clusters of galaxies with the Fermi large area telescope, J. Cosmol. Astropart. Phys., Volume 2010 (2010) no. 5 http://adsabs.harvard.edu/abs/2010JCAP...05..025A

[73] S. Zimmer; J. Conrad; A. Pinzke A combined analysis of clusters of galaxies – gamma ray emission from cosmic rays and dark matter, Rome, Italy (2011) | arXiv

[74] Fermi-LAT Collaboration; M. Ackermann; M. Ajello; A. Albert et al. Search for gamma-ray spectral lines with the Fermi large area telescope and dark matter implications, Phys. Rev. D, Volume 88 (2013) | arXiv

[75] A. Albert; G.A. Gómez-Vargas; M. Grefe; C. Muñoz; C. Weniger; E.D. Bloom; E. Charles; M.N. Mazziotta; A. Morselli Search for 100 MeV to 10 GeV γ-ray lines in the Fermi-LAT data and implications for gravitino dark matter in the μνSSM, J. Cosmol. Astropart. Phys., Volume 2014 (2014) no. 10 | arXiv

[76] H.E.S.S. Collaboration; A. Abramowski et al. Search for photon-linelike signatures from dark matter annihilations with H.E.S.S., Phys. Rev. Lett., Volume 110 (2013) no. 4 | arXiv

[77] A.R. Pullen; R.-R. Chary; M. Kamionkowski Search with EGRET for a gamma ray line from the galactic center, Phys. Rev. D, Volume 76 (2007) | arXiv

[78] C. Weniger A tentative gamma-ray line from dark matter annihilation at the Fermi large area telescope, J. Cosmol. Astropart. Phys., Volume 2012 (2012) no. 8 | arXiv

[79] K. Ichiki; M. Oguri; K. Takahashi WMAP constraints on decaying cold dark matter, Phys. Rev. Lett., Volume 93 (2004) | arXiv

[80] M. Cirelli; P. Panci; P.D. Serpico Diffuse gamma ray constraints on annihilating or decaying dark matter after Fermi, Nucl. Phys. B, Volume 840 (2010), pp. 284-303 | arXiv

[81] M. Cirelli; E. Moulin; P. Panci; P.D. Serpico; A. Viana Gamma ray constraints on decaying dark matter, Phys. Rev. D, Volume 86 (2012) | arXiv

[82] J. Buckley; D.F. Cowen; S. Profumo; A. Archer; M. Cahill-Rowley; R. Cotta; S. Digel; A. Drlica-Wagner; F. Ferrer; S. Funk; J. Hewett; J. Holder; B. Humensky; A. Ismail; M. Israel; T. Jeltema; A. Olinto; A. Peter; J. Pretz; T. Rizzo; J. Siegal-Gaskins; A. Smith; D. Staszak; J. Vandenbroucke; M. Wood Cosmic frontier indirect dark matter detection working group summary, Snowmass Indirect Dark Matter Detection CF2 Working Group Summary, October 2013 | arXiv

[83] H. Silverwood; C. Weniger; P. Scott; G. Bertone A realistic assessment of the CTA sensitivity to dark matter annihilation, J. Cosmol. Astropart. Phys., Volume 2015 (2015) no. 3 | arXiv

[84] V. Lefranc; E. Moulin; P. Panci; J. Silk Prospects for annihilating dark matter in the inner galactic halo by the Cherenkov telescope array, Phys. Rev. D, Volume 91 (2015) | arXiv

[85] HAWC Collaboration; A.U. Abeysekara et al. The HAWC gamma-ray observatory: dark matter, cosmology, and fundamental physics, Rio de Janeiro, Brazil (2013) | arXiv

[86] A.W. Smith; R. Bird; J. Buckley; K. Byrum; J. Finley; N. Galante; A. Geringer-Sameth; D. Hanna; J. Holder; D. Kieda; S. Koushiappas; R.A. Ong; D. Staszak; B. Zitzer CF2 white paper: status and prospects of the VERITAS indirect dark matter detection program, submitted to the Snowmass 2013 Proceedings, Cosmic Frontier Subgroup 2, Apr. 2013 | arXiv

[87] J. Conrad Indirect detection of WIMP dark matter: a compact review, invited contribution to “Interplay between Particle and Astroparticle Physics”, Queen Mary University of London (UK), November 2014 | arXiv

[88] H. Baer; K.-Y. Choi; J.E. Kim; L. Roszkowski Dark matter production in the early Universe: beyond the thermal WIMP paradigm, Phys. Rep., Volume 555 (2015), pp. 1-60 http://linkinghub.elsevier.com/retrieve/pii/S0370157314003925

[89] J. Fan; M. Reece In wino veritas? Indirect searches shed light on neutralino dark matter, J. High Energy Phys., Volume 10 (2013) http://adsabs.harvard.edu/abs/2013JHEP...10..124F

Cited by Sources:

Comments - Policy