The current generation of instruments in gamma-ray astrophysics launched a new era in the search for a dark matter signal in the high-energy sky. Such searches are said indirect, in the sense that the presence of a dark matter particle is inferred from the detection of products of its pair-annihilation or decay. They have recently started to probe the natural domain of existence for weakly interacting massive particles (WIMPs), the favorite dark matter candidates today. In this article, we review the basic framework for indirect searches and we present a status of current limits obtained with gamma-ray observations. We also devote a section to another possible class of cosmological gamma-ray sources, primordial black holes, also considered as a potential constituent of dark matter.
La génération actuelle des détecteurs de rayons gamma d'origine astrophysique a ouvert une nouvelle ère dans la recherche d'un signal à haute énergie lié à la présence de particules de matière noire. Ces recherches dites indirectes, car on détecte les produits d'annihilation de deux de ces particules ou de leur désintégration, ont récemment commencé à sonder le domaine naturel des paramètres de l'hypothèse favorite : l'existence de particules de grande masse soumises seulement à l'interaction faible (weakly interacting massive particles ou WIMP). Dans cet article, nous rappelons le cadre de base des recherches indirectes, puis nous présentons l'ensemble des limites actuelles obtenues avec les observations gamma. Nous consacrons également une section aux trous noirs primordiaux, une autre classe de sources gamma d'origine cosmologique, discutée également comme candidat « matière » noire dans la littérature.
Mot clés : Rayons gamma, Matière noire, Trous noirs primordiaux
Pierre Brun 1; Johann Cohen-Tanugi 2
@article{CRPHYS_2016__17_6_649_0, author = {Pierre Brun and Johann Cohen-Tanugi}, title = {High-energy gamma-ray sources of cosmological origin}, journal = {Comptes Rendus. Physique}, pages = {649--662}, publisher = {Elsevier}, volume = {17}, number = {6}, year = {2016}, doi = {10.1016/j.crhy.2016.04.007}, language = {en}, }
Pierre Brun; Johann Cohen-Tanugi. High-energy gamma-ray sources of cosmological origin. Comptes Rendus. Physique, Volume 17 (2016) no. 6, pp. 649-662. doi : 10.1016/j.crhy.2016.04.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.04.007/
[1] Gamma rays as probes of the Universe, C. R. Physique, Volume 17 (2016) no. 6, pp. 632-648 ( in this issue )
[2] WIMP searches with gamma rays in the Fermi era: challenges, methods and results, J. Exp. Theor. Phys., Volume 148 (2015) no. 12 | arXiv
[3] Cosmic rays from primordial black holes, Astrophys. J., Volume 371 (1991), pp. 447-469 http://adsabs.harvard.edu/abs/1991ApJ...371..447M
[4] Gamma rays from primordial black holes, Astrophys. J., Volume 206 (1976) | DOI
[5] New cosmological constraints on primordial black holes, Phys. Rev. D, Volume 81 (2010) no. 10 | arXiv
[6] C. R. Physique, 16 (2015), pp. 600-609
[7] C. R. Physique, 16 (2015), pp. 686-703
[8] New constraints on the primordial black hole number density from galactic γ-ray astronomy, Astron. Astrophys., Volume 502 (2009), pp. 37-43 | arXiv
[9] C. R. Physique, 16 (2015), pp. 610-627
[10] A new search for primordial black hole evaporations using the Whipple gamma-ray telescope, J. Cosmol. Astropart. Phys., Volume 2006 (2006) no. 1 http://iopscience.iop.org/1475-7516/2006/01/013
[11] Searching for primordial black holes with the VERITAS gamma-ray experiment, J. Phys. Conf. Ser., Volume 375 (2012) no. 5 http://stacks.iop.org/1742-6596/375/i=5/a=052024?key=crossRef.0dcc5ca50a1d6c414fadd6ef9e6b8ddb
[12] Limits on primordial black hole evaporation with the H.E.S.S. array of Cherenkov telescopes http://adsabs.harvard.edu/abs/2013arXiv1307.4898G | arXiv
[13] et al. Milagro limits and HAWC sensitivity for the rate-density of evaporating primordial black holes, Astropart. Phys., Volume 64 (2014), pp. 4-12 | arXiv
[14] The future of gamma-ray astronomy, C. R. Physique, Volume 17 (2016) no. 6, pp. 663-678 ( in this issue )
[15] Method for detecting a cosmological density of condensed objects, Astrophys. J., Volume 185 (1973), p. 397 http://adsabs.harvard.edu/absdoi/10.1086/152430
[16] Gamma-ray bursts at high and very high energies, C. R. Physique, Volume 17 (2016) no. 6, pp. 617-631 ( in this issue )
[17] No observational constraints from hypothetical collisions of hypothetical dark halo primordial black holes with galactic objects, Astrophys. J., Volume 705 (2009), pp. 659-669 http://adsabs.harvard.edu/abs/2009ApJ...705..659A
[18] Gravitationally lensed gamma-ray bursts as probes of dark compact objects, Astrophys. J., Volume 512 (1999) no. 1, p. L13-L16 http://stacks.iop.org/1538-4357/512/i=1/a=L13
[19] Searching gamma-ray bursts for gravitational lensing echoes – implications for compact dark matter, Astrophys. J., Volume 414 (1993), pp. 36-40 http://adsabs.harvard.edu/abs/1993ApJ...414...36N
[20] The MACHO project: microlensing results from 5.7 years of large Magellanic Cloud observations, Astrophys. J., Volume 542 (2000) no. 1, pp. 281-307 | DOI
[21] Limits on the macho content of the galactic halo from the EROS-2 survey of the Magellanic Clouds, Astron. Astrophys., Volume 469 (2007) no. 2, pp. 387-404 | DOI
[22] Constraints on primordial black holes as dark matter candidates from capture by neutron stars, Phys. Rev. D, Volume 87 (2013) http://adsabs.harvard.edu/abs/2013PhRvD..87l3524C
[23] Tidal capture of a primordial black hole by a neutron star: implications for constraints on dark matter, J. Cosmol. Astropart. Phys., Volume 2014 (2014) no. 6 http://adsabs.harvard.edu/abs/2014JCAP...06..026P
[24] New constraints on primordial black holes abundance from femtolensing of gamma-ray bursts, Phys. Rev. D, Volume 86 (2012) no. 4 http://link.aps.org/absdoi/10.1103/PhysRevD.86.043001
[25] Cosmological lower bound on heavy-neutrino masses, Phys. Rev. Lett., Volume 39 (1977), pp. 165-168
[26] Unitarity limits on the mass and radius of dark-matter particles, Phys. Rev. Lett., Volume 64 (1990), pp. 615-618
[27] A supersymmetry primer (Gordon L. Kane, ed.), Perspectives on Supersymmetry, Advanced Series on Directions in High Energy Physics, vol. 18, World Scientific, 1998, pp. 1-98 | arXiv
[28] Is the lightest Kaluza–Klein particle a viable dark matter candidate?, Nucl. Phys. B, Volume 650 (2003), pp. 391-419 | arXiv
[29] Warped unification, proton stability, and dark matter, Phys. Rev. Lett., Volume 93 (2004) no. 23 | arXiv
[30] Missing energy signatures of dark matter at the LHC, Phys. Rev. D, Volume 85 (2012) | arXiv
[31] et al. Search for dark matter candidates and large extra dimensions in events with a photon and missing transverse momentum in pp collision data at with the ATLAS detector, Phys. Rev. Lett., Volume 110 (2013) no. 1 | arXiv
[32] et al. Dark matter search results from the CDMS II experiment, Science, Volume 327 (2010), pp. 1619-1621 | arXiv
[33] et al. Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett., Volume 109 (2012) | arXiv
[34] A universal density profile from hierarchical clustering, Astrophys. J., Volume 490 (1997), pp. 493-508 | arXiv
[35] Formation and evolution of galaxy dark matter halos and their substructure, Astrophys. J., Volume 667 (2007), pp. 859-877 | arXiv
[36] Empirical models for dark matter halos. I. Nonparametric construction of density profiles and comparison with parametric models, Astron. J., Volume 132 (2006), pp. 2685-2700 | arXiv
[37] et al. The diversity and similarity of cold dark matter halos, Mon. Not. R. Astron. Soc., Volume 402 (2010), p. 21 | arXiv
[38] The Universe at faint magnitudes. 2. Models for the predicted star counts, Astrophys. J. Suppl., Volume 44 (1980), pp. 73-110
[39] Searching for TeV dark matter by atmospheric Čerenkov techniques, Phys. Lett. B, Volume 293 (1992) no. 1–2, pp. 149-156 http://linkinghub.elsevier.com/retrieve/pii/037026939291494T
[40] Observability of γ rays from dark matter neutralino annihilations in the Milky Way halo, Astropart. Phys., Volume 9 (1998) no. 2, pp. 137-162 http://linkinghub.elsevier.com/retrieve/pii/S0927650598000152
[41] et al. H.E.S.S. observations of the Galactic Center region and their possible dark matter interpretation, Phys. Rev. Lett., Volume 97 (2006) | arXiv
[42] The characterization of the gamma-ray signal from the central Milky Way: a compelling case for annihilating dark matter http://adsabs.harvard.edu/abs/2014arXiv1402.6703D (unpublished)
[43] Dark matter annihilation in the halo of the Milky Way, Mon. Not. R. Astron. Soc., Volume 345 (2003), pp. 1313-1322 | arXiv
[44] et al. Search for a dark matter annihilation signal from the galactic center halo with H.E.S.S., Phys. Rev. Lett., Volume 106 (2011) no. 16 http://link.aps.org/absdoi/10.1103/PhysRevLett.106.161301
[45] et al. Constraints on the galactic halo dark matter from Fermi-LAT diffuse measurements, Astrophys. J., Volume 761 (2012) no. 2, p. 91 http://iopscience.iop.org/0004-637X/761/2/91
[46] Constraints on WIMP annihilation for contracted dark matter in the inner Galaxy with the Fermi-LAT, J. Cosmol. Astropart. Phys., Volume 2013 (2013) no. 10 http://adsabs.harvard.edu/abs/2013JCAP...10..029G
[47] et al. Fermi large area telescope first source catalog, Astrophys. J. Suppl., Volume 188 (2010), pp. 405-436 | arXiv
[48] Atomic hydrogen gas in dark-matter minihalos and the compact high velocity clouds, Astrophys. J. Suppl., Volume 143 (2002), pp. 419-454 | arXiv
[49] Searches for dark matter subhaloes with wide-field Cherenkov telescope surveys, Phys. Rev. D, Volume 83 (2011) no. 1 | arXiv
[50] Searching for dark matter annihilation in the smith high-velocity cloud, Astrophys. J., Volume 790 (2014) no. 1, p. 24 http://stacks.iop.org/0004-637X/790/i=1/a=24
[51] et al. Search for dark matter satellites using the Fermi-LAT, Astrophys. J., Volume 747 (2012), p. 121 | arXiv
[52] Clumps and streams in the local dark matter distribution, Nature, Volume 454 (2008), pp. 735-738 | arXiv
[53] Dark matter subhalos in the Fermi first source catalog, Phys. Rev. D, Volume 82 (2010) no. 6 | arXiv
[54] et al. Observations of Milky Way dwarf spheroidal galaxies with the Fermi-large area telescope detector and constraints on dark matter models, Astrophys. J., Volume 712 (2010), pp. 147-158 | arXiv
[55] et al. VERITAS search for VHE gamma-ray emission from dwarf spheroidal galaxies, Astrophys. J., Volume 720 (2010), pp. 1174-1180 http://adsabs.harvard.edu/abs/2010ApJ...720.1174A
[56] et al. Searches for dark matter annihilation signatures in the Segue 1 satellite galaxy with the MAGIC-I telescope, J. Cosmol. Astropart. Phys., Volume 2011 (2011) no. 6 http://adsabs.harvard.edu/abs/2011JCAP...06..035A
[57] et al. Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi large area telescope, Phys. Rev. Lett., Volume 107 (2011) no. 24 | arXiv
[58] et al. Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi large area telescope, Phys. Rev. D, Volume 89 (2014) no. 4 http://link.aps.org/absdoi/10.1103/PhysRevD.89.042001
[59] Using likelihood for Combined Data Set Analysis, 2015 (2014 Fermi Symposium Proceedings – eConf C14102.1) | arXiv
[60] et al. Search for dark matter annihilation signatures in H.E.S.S. observations of dwarf spheroidal galaxies, Phys. Rev. D, Volume 90 (2014) | arXiv
[61] et al. Searching for dark matter annihilation from Milky Way dwarf spheroidal galaxies with six years of Fermi-LAT data, Phys. Rev. Lett., Volume 115 (2015) | arXiv
[62] et al. Observations of the Sagittarius dwarf galaxy by the HESS experiment and search for a dark matter signal, Astropart. Phys., Volume 29 (2008), pp. 55-62 http://adsabs.harvard.edu/abs/2008APh....29...55A
[63] Sagittarius dwarf spheroidal galaxy observed by H.E.S.S., Rio de Janeiro, Brazil (2013), p. 5 | arXiv
[64] et al. Optimized dark matter searches in deep observations of Segue 1 with MAGIC, J. Cosmol. Astropart. Phys., Volume 2014 (2014) no. 2 http://adsabs.harvard.edu/abs/2013arXiv1312.1535A | arXiv
[65] et al. VERITAS deep observations of the dwarf spheroidal galaxy Segue 1, Phys. Rev. D, Volume 85 (2012) http://adsabs.harvard.edu/abs/2012PhRvD..85f2001A
[66] et al. The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV, Astrophys. J., Volume 799 (2015) no. 1, p. 86 http://iopscience.iop.org/0004-637X/799/1/86
[67] The composition of the Fermi-LAT IGRB intensity: emission from extragalactic point sources and dark matter annihilations, Phys. Rev. D, Volume 91 (2015) no. 12
[68] Limits on dark matter annihilation signals from the Fermi LAT 4-year measurement of the isotropic gamma-ray background, J. Cosmol. Astropart. Phys., Volume 2015 (2015) no. 09 http://adsabs.harvard.edu/abs/2015arXiv150105464T
[69] The origin of the extragalactic gamma-ray background and implications for dark-matter annihilation, Astrophys. J. Lett., Volume 800 (2015) http://adsabs.harvard.edu/abs/2015arXiv150105301A
[70] et al. Constraints on cosmic rays, magnetic fields, and dark matter from gamma-ray observations of the coma cluster of galaxies with VERITAS and Fermi, Astrophys. J., Volume 757 (2012), p. 123 http://adsabs.harvard.edu/abs/2012ApJ...757..123A
[71] et al. Search for dark matter annihilation signals from the fornax galaxy cluster with H.E.S.S., Astrophys. J., Volume 750 (2012), p. 123 http://adsabs.harvard.edu/abs/2014ApJ...783...63A (Erratum)
[72] et al. Constraints on dark matter annihilation in clusters of galaxies with the Fermi large area telescope, J. Cosmol. Astropart. Phys., Volume 2010 (2010) no. 5 http://adsabs.harvard.edu/abs/2010JCAP...05..025A
[73] A combined analysis of clusters of galaxies – gamma ray emission from cosmic rays and dark matter, Rome, Italy (2011) | arXiv
[74] et al. Search for gamma-ray spectral lines with the Fermi large area telescope and dark matter implications, Phys. Rev. D, Volume 88 (2013) | arXiv
[75] Search for 100 MeV to 10 GeV γ-ray lines in the Fermi-LAT data and implications for gravitino dark matter in the μνSSM, J. Cosmol. Astropart. Phys., Volume 2014 (2014) no. 10 | arXiv
[76] et al. Search for photon-linelike signatures from dark matter annihilations with H.E.S.S., Phys. Rev. Lett., Volume 110 (2013) no. 4 | arXiv
[77] Search with EGRET for a gamma ray line from the galactic center, Phys. Rev. D, Volume 76 (2007) | arXiv
[78] A tentative gamma-ray line from dark matter annihilation at the Fermi large area telescope, J. Cosmol. Astropart. Phys., Volume 2012 (2012) no. 8 | arXiv
[79] WMAP constraints on decaying cold dark matter, Phys. Rev. Lett., Volume 93 (2004) | arXiv
[80] Diffuse gamma ray constraints on annihilating or decaying dark matter after Fermi, Nucl. Phys. B, Volume 840 (2010), pp. 284-303 | arXiv
[81] Gamma ray constraints on decaying dark matter, Phys. Rev. D, Volume 86 (2012) | arXiv
[82] Cosmic frontier indirect dark matter detection working group summary, Snowmass Indirect Dark Matter Detection CF2 Working Group Summary, October 2013 | arXiv
[83] A realistic assessment of the CTA sensitivity to dark matter annihilation, J. Cosmol. Astropart. Phys., Volume 2015 (2015) no. 3 | arXiv
[84] Prospects for annihilating dark matter in the inner galactic halo by the Cherenkov telescope array, Phys. Rev. D, Volume 91 (2015) | arXiv
[85] et al. The HAWC gamma-ray observatory: dark matter, cosmology, and fundamental physics, Rio de Janeiro, Brazil (2013) | arXiv
[86] CF2 white paper: status and prospects of the VERITAS indirect dark matter detection program, submitted to the Snowmass 2013 Proceedings, Cosmic Frontier Subgroup 2, Apr. 2013 | arXiv
[87] Indirect detection of WIMP dark matter: a compact review, invited contribution to “Interplay between Particle and Astroparticle Physics”, Queen Mary University of London (UK), November 2014 | arXiv
[88] Dark matter production in the early Universe: beyond the thermal WIMP paradigm, Phys. Rep., Volume 555 (2015), pp. 1-60 http://linkinghub.elsevier.com/retrieve/pii/S0370157314003925
[89] In wino veritas? Indirect searches shed light on neutralino dark matter, J. High Energy Phys., Volume 10 (2013) http://adsabs.harvard.edu/abs/2013JHEP...10..124F
Cited by Sources:
Comments - Policy