Comptes Rendus
Gamma-ray astronomy / Astronomie des rayons gamma – Volume 2
The future of gamma-ray astronomy
Comptes Rendus. Physique, Volume 17 (2016) no. 6, pp. 663-678.

The field of gamma-ray astronomy has experienced impressive progress over the last decade. Thanks to the advent of a new generation of imaging air Cherenkov telescopes (H.E.S.S., MAGIC, VERITAS) and thanks to the launch of the Fermi-LAT satellite, several thousand gamma-ray sources are known today, revealing an unexpected ubiquity of particle acceleration processes in the Universe. Major scientific challenges are still ahead, such as the identification of the nature of Dark Matter, the discovery and understanding of the sources of cosmic rays, or the comprehension of the particle acceleration processes that are at work in the various objects. This paper presents some of the instruments and mission concepts that will address these challenges over the next decades.

Le domaine de l'astronomie gamma a connu des progrès impressionnants au cours de la dernière décennie. Grâce à l'avènement d'une nouvelle génération de télescopes Tcherenkov (H.E.S.S., MAGIC, VERITAS) et grâce au lancement du satellite Fermi-LAT, plusieurs milliers de sources de rayons gamma sont connues aujourd'hui, révélant une ubiquité inattendue des processus d'accélération de particules dans l'Univers. Toutefois, des questions scientifiques majeures restent en suspens, telles que l'identification de la nature de la matière sombre, la découverte et la compréhension des sources de rayons cosmiques, ou la compréhension des processus d'accélération de particules qui sont à l'œuvre dans les différents astres. Cet article présente quelques-uns des instruments et des concepts de mission qui vont relever ces défis au cours des prochaines décennies.

Published online:
DOI: 10.1016/j.crhy.2016.04.008
Keywords: Gamma rays, Astronomy, Dark matter, Cosmic rays, Particle acceleration
Mot clés : Rayons gamma, Astronomie, Matière sombre, Rayons cosmiques, Accélération de particules

Jürgen Knödlseder 1

1 IRAP, 9, avenue du Colonel-Roche, 31028 Toulouse cedex 4, France
@article{CRPHYS_2016__17_6_663_0,
     author = {J\"urgen Kn\"odlseder},
     title = {The future of gamma-ray astronomy},
     journal = {Comptes Rendus. Physique},
     pages = {663--678},
     publisher = {Elsevier},
     volume = {17},
     number = {6},
     year = {2016},
     doi = {10.1016/j.crhy.2016.04.008},
     language = {en},
}
TY  - JOUR
AU  - Jürgen Knödlseder
TI  - The future of gamma-ray astronomy
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 663
EP  - 678
VL  - 17
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.04.008
LA  - en
ID  - CRPHYS_2016__17_6_663_0
ER  - 
%0 Journal Article
%A Jürgen Knödlseder
%T The future of gamma-ray astronomy
%J Comptes Rendus. Physique
%D 2016
%P 663-678
%V 17
%N 6
%I Elsevier
%R 10.1016/j.crhy.2016.04.008
%G en
%F CRPHYS_2016__17_6_663_0
Jürgen Knödlseder. The future of gamma-ray astronomy. Comptes Rendus. Physique, Volume 17 (2016) no. 6, pp. 663-678. doi : 10.1016/j.crhy.2016.04.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.04.008/

[1] R.J. Gould; G. Schréder Phys. Rev. Lett., 16 (1966), p. 252

[2] C. Winkler Astrophys. J. Suppl. Ser., 92 (1994), p. 327

[3] V. Schönfelder et al. Astrophys. J. Suppl. Ser., 86 (1993), p. 657

[4] W.B. Atwood et al. Astrophys. J., 697 (2009), p. 1071

[5] C. Pittori; M. Tavani Nucl. Phys. B, Proc. Suppl., 134 (2004), p. 72

[6] F. Aharonian et al. Astron. Astrophys., 457 (2006), p. 899

[7] J. Aleksic et al. Astropart. Phys., 35 (2012), p. 435

[8] J. Holder et al. Astropart. Phys., 25 (2006), p. 391

[9] R. Atkins et al. Astrophys. J., 595 (2003), p. 803

[10] F. Aharonian et al. Astron. Astrophys., 390 (2002), p. 39

[11] D. Thompson C. R. Physique, 16 (2015), p. 600

[12] M. de Naurois; D. Mazin C. R. Physique, 16 (2015), p. 610

[13] L.E. Peterson; J.R. Winckler Phys. Rev. Lett., 1 (1958), p. 205

[14] J.R. Arnold et al. J. Geophys. Res., 67 (1962), p. 4878

[15] W.L. Kraushaar; G.W. Clark Phys. Rev. Lett., 8 (1962), p. 106

[16] T.C. Weekes et al. Astrophys. J., 342 (1989), p. 379

[17] F. Acero et al. Astrophys. J. Suppl. Ser., 218 (2015), p. 23

[18] M.G. Aartsen et al. Phys. Rev. D, 87 (2013)

[19] G. Bertone et al. Phys. Rep., 405 (2005), p. 279

[20] P. Brun; J. Cohen-Tanugi C. R. Physique, 17 (2016) ( in this issue ) | DOI

[21] D. Horns; A. Jacholkowska C. R. Physique, 17 (2016) ( in this issue ) | DOI

[22] M. Ackermann et al. Phys. Rev. Lett., 107 (2011)

[23] P.A.R. Ade et al., 2015 | arXiv

[24] V.F. Hess Phys. Z., 12 (1911), p. 998

[25] J.R.T. de Mello Neto Adv. Space Res., 53 (2014), p. 1476

[26] E. Amato Int. J. Mod. Phys. D, 23 (2014), p. 1430013

[27] J.W. Hewitt; M. Lemoine-Goumard C. R. Physique, 16 (2015), p. 674

[28] F. Aharonian Astropart. Phys., 43 (2013), p. 71

[29] S. Viti et al., Astrophys. Space Sci. Proc., vol. 34, 2012, p. 7 (in: Cosmic Rays in Star-Forming Environments)

[30] S. Vaupré et al. Astron. Astrophys., 658 (2014)

[31] F. Aharonian et al. Nature, 439 (2006), p. 695

[32] C.D. Dermer et al. (in: Proc. 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil, 2–9 July 2013) | arXiv

[33] H. Benhabiles-Mezhoud et al. Astrophys. J., 763 (2013), p. 98

[34] S. Casanova et al. Publ. Astron. Soc. Jpn., 62 (2010), p. 769

[35] S. Gabici et al. (in: SF2A 2010) | arXiv

[36] S. Gabici et al. Mon. Not. R. Astron. Soc., 396 (2009), p. 1629

[37] J.J. Condon Annu. Rev. Astron. Astrophys., 30 (1992), p. 575

[38] S. Ohm C. R. Physique, 17 (2016) ( in this issue ) | DOI

[39] P. Martin Astron. Astrophys., 564 (2014)

[40] S. Ohm; J. Hinton Mon. Not. R. Astron. Soc., 429 (2013), p. 70

[41] A.A. Abdo et al. Astron. Astrophys., 517 (2010)

[42] R. Blandford et al. Nucl. Phys. B, Proc. Suppl., 256 (2014), p. 9

[43] E.G. Berezhko Astrophys. J. Lett., 684 (2008)

[44] F. Piron C. R. Physique, 17 (2016) ( in this issue ) | DOI

[45] K. Fang et al. Astrophys. J., 750 (2012), p. 118

[46] I. Grenier; A. Harding C. R. Physique, 16 (2015), p. 641

[47] H. Kang et al. Astrophys. J., 456 (1996), p. 422

[48] M. Ackermann et al. Science, 334 (2011), p. 1103

[49] B. Bartoli et al. Astrophys. J., 790 (2014), p. 152

[50] A. Abramowski et al. Science, 347 (2015), p. 406

[51] R. Bühler; R. Blandford Rep. Prog. Phys., 77 (2014), p. 6

[52] C. Dermer; B. Giebels C. R. Physique, 17 (2016) ( in this issue ) | DOI

[53] J. Aleksić et al. Science, 346 (2014), p. 1080

[54] D.B. Sanders Proc. IAU, 9 (2013) no. S304, p. 426

[55] G. Dubus C. R. Physique, 16 (2015), p. 661

[56] M. De Becker; F. Raucq Astron. Astrophys., 558 (2013)

[57] L. Feretti et al. Astron. Astrophys. Rev., 20 (2012), p. 54

[58] C. Farnier et al. Astron. Astrophys., 526 (2011), p. 57

[59] K. Reitberger et al. Astron. Astrophys., 544 (2012), p. 98

[60] V. Tatischeff; M. Hernanz Astrophys. J., 663 (2007)

[61] M. Su; C. van Eldik C. R. Physique, 16 (2015), p. 686

[62] E. Charles SPIE J., 9144 (2014), p. 20

[63] S.D. Hunter et al. Astropart. Phys., 59 (2014), p. 18

[64] S. Son, et al., in: Neutron Imaging Camera, IEEE/NSS, Knoxville, TN, N11-3, 2010.

[65] http://astrogam.iaps.inaf.it

[66] V. Tatischeff, private communication.

[67] http://calet.phys.lsu.edu/

[68] P. Maestro J. Phys. Conf. Ser., 409 (2013)

[69] A. Moiseev 33rd International Cosmic Ray Conference, 2013

[70] http://dpnc.unige.ch/dampe/

[71] J. Wu; J. Chang 33rd International Cosmic Ray Conference, 2013, p. 868

[72] Y. Li; Q. Yuan Phys. Lett. B, 715 (2012), p. 35

[73] http://gamma400.lebedev.ru/

[74] A.M. Galper et al. 33rd International Cosmic Ray Conference, 2013 | arXiv

[75] http://llr.in2p3.fr/~dbernard/polar/HARPO_En.html

[76] D. Bernard et al., 2014 (SPIE) | arXiv

[77] D. Bernard NIM A, 718 (2012), p. 395

[78] S. Wang et al. 15–17 Dec. 2014 (2015) | arXiv

[79] http://herd.ihep.ac.cn/

[80] S.N. Zhang et al. SPIE J., 9144 (2014) | arXiv

[81] X. Wu et al., 2014 (SPIE) | arXiv

[82] S. Vernetto Astropart. Phys., 13 (2000), p. 75

[83] I. Sidelnik Proc. of the 10th Latin American Symposium on Nucl. Phys. and Applications, 2013 | arXiv

[84] D. Allard et al. Nucl. Phys. B, Proc. Suppl., 165 (2007), p. 110

[85] T. Bretz et al. (in: Proc. of the Nuclear Science Symposium and Medical Imaging Conference 2013) | arXiv

[86] https://www.cta-observatory.org/

[87] B.S. Acharya et al. Astropart. Phys., 43 (2013), p. 3

[88] http://www.hawc-observatory.org/

[89] R.J. Lauer Int. J. Mod. Phys. Conf. Ser., 28 (2014)

[90] J. Goodman; J. Pretz Proc. 33rd International Cosmic Ray Conference, 2013 | arXiv

[91] A. Tepe J. Phys. Conf. Ser., 375 (2012)

[92] M. Tluzykont et al. Astropart. Phys., 56 (2014), p. 42

[93] http://taiga-experiment.info/taiga-detector

[94] B.A. Antokhonov et al. NIM A, 639 (2011), p. 42

[95] N.M. Budnev et al. International Conference on Instrumentation for Colliding Beam Physics, 2014

[96] Y. Liu et al. Proc. 33rd International Cosmic Ray Conference, 2013, p. 328

[97] S. Cui et al. Astropart. Phys., 54 (2014), p. 86

[98] R. Koul et al. Proc. 32rd International Cosmic Ray Conference, vol. 9, 2011, p. 803

[99] R.J. Britto et al., SF2A (2012), p. 571

[100] J.-P. Roques et al. Astron. Astrophys., 411 (2003)

[101] D. Bernard NIM A, 701 (2013), p. 225

[102] M. Ackermann et al. Astrophys. J. Suppl. Ser., 203 (2012), p. 4

[103] R. Sparvoli, in: 12th AGILE Science Workshop, Rome, Italy, 8–9 May 2014.

[104] K. Berlöhr et al. 33rd International Cosmic Ray Conference, 2013

[105] G. Di Sciascio et al. 5th Workshop on Air Shower Detection at High Altitude, 2014

[106] S. Vernetto 5th Workshop on Air Shower Detection at High Altitude, 2014

Cited by Sources:

Comments - Policy